Skip to main content
Log in

A quay crane system that self-recovers from random shocks

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

The main challenge for a container terminal is to maximize its throughput using limited resources subject to various operational constraints under uncertainty. Traditional methods try to achieve this through an optimized plan by solving a quay crane scheduling problem; but the plan may become obsolete or infeasible after shocks (changes in the system due to uncertainty). To respond to shocks these methods require frequent re-planning, which increases the operations cost. We propose a new method to counter this. Instead of creating plans, we develop an operating protocol to respond to shocks without re-planning. Under this protocol, each quay crane along a berth follows simple rules to serve vessels that arrive continuously in time. If the system is configured properly, it always spontaneously recovers to its efficient form after a random shock. The average throughput of the system operating on its efficient form is very near its full capacity if the crane travel time per bay is relatively short. This self-recovery is robust even under a sequence of shocks as the system persistently restores its throughput after each shock. Most importantly, this is accomplished without complex computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adida E, Perakis G (2006) A robust optimization approach to dynamic pricing and inventory control with no backorders. Math Prog 107(1–2):97–129

    Article  MathSciNet  MATH  Google Scholar 

  • Bartholdi JJ III, Eisenstein DD (1996) A production line that balances itself. Oper Res 44(1):21–34

    Article  MATH  Google Scholar 

  • Bartholdi JJ III, Eisenstein DD (2005) Using bucket brigades to migrate from craft manufacturing to assembly lines. Manuf Serv Oper Manag 7(2):121–129

    Google Scholar 

  • Bartholdi JJ III, Eisenstein DD (2012) A self-coordinating bus route to resist bus bunching. Transp Res 46B:481–491

    Article  Google Scholar 

  • Bartholdi JJ III, Eisenstein DD, Foley RD (2001) Performance of bucket brigades when work is stochastic. Oper Res 49(5):710–719

    Article  MATH  Google Scholar 

  • Bartholdi JJ III, Eisenstein DD, Lim YF (2006) Bucket brigades on in-tree assembly networks. Eur J Oper Res 168(3):870–879

    Article  MathSciNet  MATH  Google Scholar 

  • Bartholdi JJ III, Eisenstein DD, Lim YF (2009) Deterministic chaos in a model of discrete manufacturing. Naval Res Logist 56(4):293–299

    Article  MathSciNet  MATH  Google Scholar 

  • Bartholdi JJ III, Eisenstein DD, Lim YF (2010) Self-organizing logistics systems. Annu Rev Control 34(1):111–117

    Article  Google Scholar 

  • Ben-Tal A, Nemirovski A (1999) Robust solutions to uncertain programs. Oper Res Lett 25:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Prog 88:411–424

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain linear programs. Math Prog 99:351–376

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Golany B, Nemirovski A, Vial J (2005) Supplier-retailer flexible commitments contracts: a robust optimization approach. Manuf Serv Oper Manag 7(3):248–273

    Google Scholar 

  • Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Prog 98:49–71

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Thiele A (2006) A robust optimization approach to inventory theory. Oper Res 54(1):150–168

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Iancu DA, Parrilo PA (2010) Optimality of affine policies in multistage robust optimization. Math Oper Res 35(2):363–394

    Article  MathSciNet  MATH  Google Scholar 

  • Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202(3):615–627

    Article  MathSciNet  MATH  Google Scholar 

  • Blażewicz J, Cheng TCE, Machowiak M, Oğuz C (2011) Berth and quay crane allocation: a moldable task scheduling model. J Oper Res Soc 62(7):1189–1197

    Article  Google Scholar 

  • Daganzo CF (1989) The crane scheduling problem. Transp Res 23B(3):159–176

    Article  MathSciNet  Google Scholar 

  • Eisenstein DD (2005) Recovering cyclic schedules using dynamic produce-up-to policies. Oper Res 53(4):675–688

    Article  MathSciNet  MATH  Google Scholar 

  • Giallombardo G, Moccia L, Salani M, Vacca I (2008) The tactical berth allocation problem with quay crane assignment and transshipment-related quadratic yard costs. In: Proceedings of the European Transport Conference (ETC), pp 1–27

  • Golias MM (2011) A bi-objective berth allocation formulation to account for vessel handling time uncertainty. Marit Econ Logist 13(4):419–441

    Article  Google Scholar 

  • Guan Y, Yang K-H (2010) Analysis of berth allocation and inspection operations in a container terminal. Marit Econ Logist 12(4):347–369

    Article  Google Scholar 

  • Guan Y, Yang K-H, Zhou Z (2010) The crane scheduling problem: models and solution approaches. Ann Oper Res. doi:10.1007/s10479-010-0765-3

  • Han X, Lu Z, Xi L (2010) A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. Eur J Oper Res 207:1327–1340

    Article  MATH  Google Scholar 

  • Hendriks M, Laumanns M, Lefeber E, Udding JT (2010) Robust cyclic berth planning of container vessels. OR Spectr 32:501–517

    Article  MATH  Google Scholar 

  • Imai A, Chen HC, Nishimura E, Papadimitriou S (2008) The simultaneous berth and quay crane allocation problem. Transp Res 44E(5):900–920

    Article  Google Scholar 

  • Kim KH, Park YM (2004) A crane scheduling method for port container terminals. Eur J Oper Res 156:752–768

    Article  MATH  Google Scholar 

  • Lee D-H, Song L, Wang H (2006) Bilevel programming model and solutions of berth allocation and quay crane scheduling. In: Proceedings of 85th annual meeting of transportation research board (CD-ROM). Washington, DC

  • Lee D-H, Wang HQ, Miao L (2008) Quay crane scheduling with non-interference constraints in port container terminals. Transp Res 44E:124–135

    Article  Google Scholar 

  • Legato P, Mazza RM, Trunfio R (2010) Simulation-based optimization for discharge/loading operations at a maritime container terminal. OR Spectr 32:543–567

    Article  MATH  Google Scholar 

  • Legato P, Trunfio R, Meisel F (2012) Modeling and solving rich quay crane scheduling problems. Comput Oper Res 39:2063–2078

    Article  MathSciNet  MATH  Google Scholar 

  • Li W, Wu Y, Petering MEH, Goh M, de Souza R (2009) Discrete time model and algorithms for container yard crane scheduling. Eur J Oper Res 198:165–172

    Article  MATH  Google Scholar 

  • Lim YF (2011) Cellular bucket brigades. Oper Res 59(6):1539–1545

    Article  MathSciNet  MATH  Google Scholar 

  • Lim YF (2012) Order-picking by cellular bucket brigades: a case study. In: Manzini R (ed) Warehousing in the global supply chain. Springer, London, pp 71–85

    Chapter  Google Scholar 

  • Lim YF, Yang KK (2009) Maximizing throughput of bucket brigades on discrete work stations. Prod Oper Manag 18(1):48–59

    Article  Google Scholar 

  • Lim YF, Wu Y (2014) Cellular bucket brigades on U-lines with discrete work stations. Prod Oper Manag 23(7):1113–1128

    Article  Google Scholar 

  • Lim A, Rodrigues B, Xiao F, Zhu Y (2004) Crane scheduling with spatial constraints. Naval Res Logist 51(3):386–406

    Article  MathSciNet  MATH  Google Scholar 

  • Lim A, Rodrigues B, Xu Z (2007) A m-parallel crane scheduling problem with a non-crossing constraint. Naval Res Logist 54:115–127

    Article  MathSciNet  MATH  Google Scholar 

  • Liu J, Wan Y, Wang L (2006) Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures. Naval Res Logist 53:60–74

    Article  MathSciNet  MATH  Google Scholar 

  • Meier L, Schumann R (2007) Coordination of interdependent planning systems: a case study. In: Koschke R, Otthein H, Rödiger K-H, Ronthaler M (eds) Lecture notes in informatics (LNI) P-109. Köllen Druck+Verlag GmbH, Bonn, pp 389–396

    Google Scholar 

  • Meisel F (2009) Seaside operations planning in container terminals. Physica-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  • Meisel F (2011) The quay crane scheduling problem with time windows. Naval Res Logist 58:619–636

    Article  MathSciNet  MATH  Google Scholar 

  • Meisel F, Bierwirth C (2006) Integration of berth allocation and crane assignment to improve the resource utilization at a seaport container terminal. In: Haasis H-D, Kopfer H, Schönberger J (eds) Operations research proceedings 2005. Springer, Berlin, pp 105–110

    Chapter  Google Scholar 

  • Meisel F, Bierwirth C (2009) Heuristics for the integration of crane productivity in the berth allocation problem. Transp Res 45E(1):196–209

    Article  Google Scholar 

  • Meisel F, Bierwirth C (2011) A unified approach for the evaluation of quay crane scheduling models and algorithms. Comput Oper Res 38:683–693

    Article  Google Scholar 

  • Meisel F, Bierwirth C (2013) A framework for integrated berth allocation and crane operations planning in seaport container terminals. Transp Sci 47(2):131–147

    Article  Google Scholar 

  • Oğuz C, Blażewicz J, Cheng TCE, Machowiak M (2004) Berth allocation as a moldable task scheduling problem. In: Proceedings of the 9th international workshop on project management and scheduling (PMS 2004), Nancy, pp 201–205

  • Park YM, Kim KH (2003) A scheduling method for berth and quay cranes. OR Spectr 25(1):1–23

    Article  MATH  Google Scholar 

  • Peterkofsky RI, Daganzo CF (1990) A branch and bound solution method for the crane scheduling problem. Transp Res 24B(3):139–172

    Google Scholar 

  • See C, Sim M (2010) Robust approximation to multi-period inventory management. Oper Res 58(3):583–594

    Article  MathSciNet  MATH  Google Scholar 

  • Theofanis S, Golias M, Boile M (2007) Berth and quay crane scheduling: a formulation reflecting service deadlines and productivity agreements. In: Proceedings of the international conference on transport science and technology (TRANSTEC 2007), Prague, pp 124–140

  • UNCTAD (2009) Review of maritime transport. United Nations conference on trade and development

  • Xu Y, Chen Q, Quan X (2012) Robust berth scheduling with uncertain vessel delay and handling time. Ann Oper Res 192:123–140

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng Q, Yang Z, Hu X (2011) Disruption recovery model for berth and quay crane scheduling in container terminals. Eng Optim 43(9):967–983

    Article  MathSciNet  Google Scholar 

  • Zhen L, Lee LH, Chew EP (2011) A decision model for berth allocation under uncertainty. Eur J Oper Res 212:54–68

    Article  Google Scholar 

  • Zhu Y, Lim A (2006) Crane scheduling with non-crossing constraint. J Oper Res Soc 57(12):1464–1471

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Fong Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y.F., Zhang, Y. & Wang, C. A quay crane system that self-recovers from random shocks. Flex Serv Manuf J 27, 561–584 (2015). https://doi.org/10.1007/s10696-015-9211-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-015-9211-9

Keywords

Navigation