Skip to main content
Log in

The effect of live feeds bathed with the red seaweed Asparagopsis armata on the survival, growth and physiology status of Sparus aurata larvae

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Larval rearing is affected by a wide range of microorganisms that thrive in larviculture systems. Some seaweed species have metabolites capable of reducing the bacterial load. However, no studies have yet tested whether including seaweed metabolites on larval rearing systems has any effects on the larvae development. This work assessed the development of Sparus aurata larvae fed preys treated with an Asparagopsis armata product. Live prey, Brachionus spp. and Artemia sp., were immersed in a solution containing 0.5% of a commercial extract of A. armata (Ysaline 100, YSA) for 30 min, before being fed to seabream larvae (n = 4 each). In the control, the live feed was immersed in clear water. Larval parameters such as growth, survival, digestive capacity (structural-histology and functional-enzymatic activity), stress level (cortisol content), non-specific immune response (lysozyme activity), anti-bacterial activity (disc-diffusion assay) and microbiota quantification (fish larvae gut and rearing water) were monitored. Fish larvae digestive capacity, stress level and non-specific immune response were not affected by the use of YSA. The number of Vibrionaceae was significantly reduced both in water and larval gut when using YSA. Growth was enhanced for YSA treatment, but higher mortality was also observed, especially until 10 days after hatching (DAH). The mortality peak observed at 8 DAH for both treatments, but higher for YSA, indicates larval higher susceptibility at this development stage, suggesting that lower concentrations of YSA should be used until 10 DAH. The application of YSA after 10 DAH onwards promotes a safer rearing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DP, Zeeman MG (1995) Immunotoxicology in fish. In: Rand GM (ed) Fundamentals of aquatic toxicology, 2nd edn. Taylor and Francis, London, pp 371–402

    Google Scholar 

  • Attramadal K, Øie G, Størseth T, Alver M, Vadstein O, Olsen Y (2012) The effects of moderate ozonation or high intensive UV-irradiation on the microbial environment in RAS for marine larvae. Aquaculture 300(333):121–129

    Article  Google Scholar 

  • Bansemir A, Bleme M, Schröder S, Lindequist U (2006) Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252:79–84

    Article  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integ and Comp Biol 42:517–525

    Article  CAS  Google Scholar 

  • Bessey OA, Lowry OH, Brock MJ (1946) A method for the rapid determination of alkaline phosphates with five cubic millimetres of serum. J Biol Chem 164:321–329

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bricknell I, Dalmo RA (2005) The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol 19:457–472

    Article  CAS  PubMed  Google Scholar 

  • Califano G, Castanho S, Soares F, Ribeiro L, Cox CJ, Mata L, Costa R (2017) Molecular taxonomic profiling of bacterial communities in a gilthead seabream (Sparus aurata) hatchery. Front Microbiol 8:204. doi:10.3389/fmicb.2017.00204

    Article  PubMed  PubMed Central  Google Scholar 

  • Cañavate JP, Fernández-Díaz C (2001) Pilot evaluation of freeze-dried microalgae in the mass rearing of gilthead seabream (Sparus aurata) larvae. Aquaculture 193:257–269

    Article  Google Scholar 

  • Cecchini S, Terova G, Caricato G, Saroglia M (2000) Lysozyme activity in embryos and larvae of sea bass (Dicentrarchus labrax L.), spawned by broodstocks fed with vitamin C enriched diets. Bull Eur Ass Fish Pathol 20(3):120–124

    Google Scholar 

  • Chabbert YA (1963) L’antibiogramme. Sensibilité et résistance des bactéries aux antibiotiques. Edited by St-Mandé, Editions de la Tourelle

  • Citarasu T (2010) Herbal biomedicines: a new opportunity for aquaculture industry. Aquac Int 18:403–414

    Article  Google Scholar 

  • Colloca F, Cerasi S (2005) Cultured aquatic species information programme, Sparus aurata. FAO Fisheries and Aquaculture Department. Rome. www.fao.org/fishery/culturedspecies/Sparus_aurata/en. Accessed September 2013

  • Conceição LEC, Yúfera M, Makridis P, Morais S, Dinis MT (2010) Live feeds for early stages of fish rearing. Aquac Res 41:613–640

    Article  Google Scholar 

  • Dhert P, Rombaut G, Suantika G, Sorgeloos P (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200:129–146

    Article  Google Scholar 

  • Dimitroglou A, Merrifield D, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production – a Mediterranean perspective. Fish Shellfish Immunol 30:1–16

    Article  CAS  PubMed  Google Scholar 

  • Elbal MT, García Hernández MP, Lozano MT, Agulleiro B (2004) Development of the digestive tract of gilthead seabream (Sparus aurata L.). Light and electron microscopic studies. Aquaculture 234:215–238

    Article  Google Scholar 

  • EPA (1989) Health and environmental effects document for bromoform. Cincinnati.

  • FAO (2012) The state of world fisheries and aquaculture. Rome.

  • Gisbert E, Ortiz-Delgado JB, Sarasquete C (2008) Nutritional cellular biomarkers in early life stages of fish. Histol Histopathol 23:1525–1539

    CAS  PubMed  Google Scholar 

  • Haché R, Plante S (2011) The relationship between enrichment, fatty acid profiles and bacterial load in cultured rotifers (Brachionus plicatilis L-strain) and Artemia (Artemia salina strain Franciscana). Aquaculture 311:201–208

    Article  Google Scholar 

  • Hamlin HJ, von Herbing IH, Kling LJ (2000) Histological and morphological evaluations of the digestive tract and associated organs of haddock throughout post-hatching ontogeny. J Fish Biol 57:716–732

    Article  Google Scholar 

  • Harikrishnan R, Balasundaram C, Heo MS (2011) Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 317:1–15

    Article  CAS  Google Scholar 

  • Kjorsvik E, Galloway TF, Estevez A, Sӕle Ø, Moren M (2011) Effects of larval nutrition on development In: Holt, GJ (ed). Larval Fish Nutrition. Wiley-Blackewll, pp 219–248

  • Lazo JP, Darias MJ, Gisbert E (2011) Ontogeny of the digestive tract in larval. In: Holt GJ, (ed) Fish Nutrition. Wiley-Blackwell, pp 5–46

  • Magariños B, Pazos F, Santos Y, Romalde JL, Toranzo AE (1995) Response of Pasteurella piscicida and Flexibacter maritimus to skin mucus of marine fish. Dis Aquat Org 21:103–108

    Article  Google Scholar 

  • Magnadottir B (2010) Immunological control of fish diseases. Mar Biotechnol 12:361–379

    Article  CAS  PubMed  Google Scholar 

  • Manilal A, Sujith S, Kiran GS, Selvin J, Shakir C, Ganghimathi R, Panikkar MVN (2009) Biopotentials of seaweeds collected from southwest coast on India. J Mar Sci Technol 17(1):67–73

    Google Scholar 

  • Maroux S, Louvard D, Baratti J (1973) The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta 321:282–295

    Article  CAS  PubMed  Google Scholar 

  • Méthais P, Bieth J (1968) Détermination de l’a-amylase par une microtechnique. Ann Biol Clin 26:133–142

    Google Scholar 

  • Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  • Moretti A, Pedini Fernadez-Criado M, Cittolin G, Guidastri R (1999). Manual on hatchery production of sea bass and gilthead sea bream. Volume 1. FAO Fisheries and Aquaculture Department. Rome.

  • Murray AL, Ponald JP, Alcorn SW, Fairgrieve WT, Shearer KD, Roley D (2003) Effects of various feed supplements containing fish protein hydrolysate or fish processing by products on the innate immune functions of juvenile coho salmon (Oncorhynchus kisutch). Aquaculture 220(1–4):643–653

    Article  CAS  Google Scholar 

  • Parra G, Yufera M (2000) Feeding, physiology and growth responses in first-feeding gilthead seabream (Sparus aurata L.) larvae in relation to prey density. J Exp Mar Bio Ecol 243:1–15

    Article  Google Scholar 

  • Prol-García MJ, Planas M, Pintado J (2010) Different colonization and residence time of Listonella anguillarum and Vibrio splendidus in the rotifer Brachionus plicatilis determined by real-time PCR and DGGE. Aquaculture 302:26–35

    Article  Google Scholar 

  • Qi Z, Dierckens K, Defoirdt T, Sorgeloos P, Boon N, Bao Z, Bossier P (2009) Analysis of the evolution of microbial communities associated with different cultures of rotifer strains belonging to different cryptic species of the Brachionus plicatilis species complex. Aquaculture 292:23–29

    Article  Google Scholar 

  • Ribeiro L, Zambonino-Infate JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup, 1858. Aquaculture 179:465–473

    Article  CAS  Google Scholar 

  • Rocha RJ, Ribeiro L, Costa R, Dinis MT (2008) Does the presence of microalgae influence fish larvae prey capture? Aquac Res 39(4):362–369

    Article  Google Scholar 

  • Rombaut G, Suantika G, Boon N, Maertens S, Dhert P, Top E, Sorgeloos P, Verstraete W (2001) Monitoring of the evolving diversity of the microbial community present in rotifer cultures. Aquaculture 198:237–252

    Article  Google Scholar 

  • Ronnestad I, Tonheim SK, Fyhn HJ, Rojas-García CR, Kamisaka Y, Koven W, Finn RN, Teriesen BF, Barr Y, Conceição LEC (2003) The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture 227:147–164

    Article  CAS  Google Scholar 

  • Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Sæle Ø, Boglione C (2013) Feeding behavior and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquacult 5(1):s59–s98

    Article  Google Scholar 

  • Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39:223–239

    Article  CAS  Google Scholar 

  • Shields RJ (2001) Larviculture of marine finfish in Europe. Aquaculture 200:55–88

    Article  Google Scholar 

  • Tandler A, Anav FA, Choshniak I (1995) The effect of salinity on growth rate, survival and swimbladder inflation in gilthead seabream, Sparus aurata, larvae. Aquaculture 135:343–353

    Article  Google Scholar 

  • Tsalafouta A, Papandroulakis N, Gorissen M, Katharios P, Flik G, Pavlidis M (2014) Ontogenesis of the HPI axis and molecular regulation of the cortisol stress response during early development in Dicentrarchus labrax. Sci Rep 4:552. doi:10.1038/srep05525

    Google Scholar 

  • Vadstein O, Bergh Ø, Gatesoupe FJ, Galindo-Villegas J, Mulero V, Picchietti S, Scapigliati G, Makridis P, Olsen Y, Dierckens K, Defoirdt T, Boo N, De Schryver P, Bossier P (2013) Microbiology and immunology of fish larvae. Rev Aquacult 5:s1–s25

    Article  Google Scholar 

  • Verdonck L, Grisez L, Sweetman E, Minkoff G, Sorgeloos P, Ollevier F, Swings J (1997) Vibrios associated with routine productions of Brachionus plicatilis. Aquaculture 149:203–214

    Article  Google Scholar 

  • Yúfera M, Darias MJ (2007) The onset exogenous feeding in marine fish larvae. Aquaculture 268:53–63

    Article  Google Scholar 

  • Zambonino-Infante JL, Gisbert E, Sarasquete C, Navarro I, Gutiérrez J, Cahu CL (2008) Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino JEP, Bureau D, Kapoor BG (eds) Feeding and digestive functions in fishes. Science Publishers, Enfield, pp 281–348

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was supported by the Portuguese Foundation for Science and Technology. SATA project: PTDC/MAR/112792/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castanho, S., Califano, G., Soares, F. et al. The effect of live feeds bathed with the red seaweed Asparagopsis armata on the survival, growth and physiology status of Sparus aurata larvae. Fish Physiol Biochem 43, 1043–1054 (2017). https://doi.org/10.1007/s10695-017-0351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-017-0351-6

Keywords

Navigation