Skip to main content
Log in

Dietary silymarin supplementation promotes growth performance and improves lipid metabolism and health status in grass carp (Ctenopharyngodon idellus) fed diets with elevated lipid levels

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study was carried out to evaluate whether silymarin supplementation influences growth, lipid metabolism, and health status in grass carp fed elevated dietary lipid levels. The juvenile fish (27.43 ± 0.17 g/tail) were fed six isonitrogenous and isocaloric diets in a factorial design containing 0, 100, or 200 mg kg−1 silymarin (SM0, SM100, SM200) associated with either 4 or 8 % lipid level (low lipid, LL, and high lipid, HL, respectively) for 82 days. The results showed that both dietary silymarin supplementation and high lipid level significantly enhanced growth performance (WG, SGR), protein efficiency ratio, and feed utilization. Silymarin supplementation significantly reduced the VSI, hepatic lipid content, and the total bilirubin concentration in the serum. The gallbladdersomatic index displayed higher in the SM100 groups than SM200 groups. Serum total cholesterol content exhibited lower in the SM100 groups than SM0 groups. Meanwhile, significant interactions were shown for hepatic gene expression of HSL and CPT1 by two factors, and SM100 group had higher hepatic gene expression of HSL and CPT1 in fish fed with the HL diets. The SM100 groups up-regulated hepatic gene expressions of HMGCR and CYP7A1 compared with the SM0 groups. Silymarin supplementation notably reduced the elevated serum MDA content induced by HL treatments. Thus, silymarin supplementation markedly promoted growth and protein efficiency, suppressed lipid accumulation, and improved health status in grass carp fed with high-lipid diets, which might be associated with its enhancement of lipolysis and β-oxidation, antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACC:

Acetyl coenzyme A carboxylase

ATGL:

Adipose triglyceride lipase

CF:

Condition factor

CL:

Crude lipid

CP:

Crude protein

CPT-1:

Carnitine palmitoyl transferase 1

CYP7A1:

Cholesterol 7α-hydroxylase

DFI:

Day feed intake

FAS:

Fatty acid synthase

FBW:

Final average body weight

FCR:

Feed conversion ratio

GI:

Gallbladdersomatic index

Glu:

Glucose

HDL-c:

High-density lipoprotein cholesterol

HL:

High lipid

HMGCR:

3-Hydroxy-3-methylglutaryl-CoA reductase

HPLC:

High-performance liquid chromatography

HSI:

Hepatosomatic index

HSL:

Hormone-sensitive lipase

IBW:

Initial average body weight

LDL-c:

Low-density lipoprotein cholesterol

LL:

Low lipid

LR:

Lipid retention

MDA:

Malondialdehyde

NEFA:

Nonesterified fatty acid

PER:

Protein efficiency ratio

PPV:

Protein productive value

SGR:

Specific growth rate

SM:

Silymarin

SOD:

Superoxide dismutase

SR:

Survival rate

T-cho:

Total cholesterol

TBil:

Total bilirubin

TG:

Triacylglycerol

VSI:

Viscerosomatic index

WG:

Weight gain

References

  • Ahmadi K, Banaee M, Vosoghei AR, Mirvaghefei AR, Ataeimehr B (2012) Evaluation of the immunomodulatory effects of silymarin extract (Silybum marianum) on some immune parameters of rainbow trout, Oncorhynchus mykiss (Actinopterygii: Salmoniformes: Salmonidae). Acta Ichthyol Piscat 42:113–120

    Article  Google Scholar 

  • Ai Q, Mai K, Li H, Zhang C, Zhang L, Duan Q, Liufu Z (2004) Effects of dietary protein to energy ratios on growth and body composition of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture 230:507–516

    Article  CAS  Google Scholar 

  • AOAC (1998) Official methods of analysis. Association of Official analytical chemists, Washington, DC

    Google Scholar 

  • Banaee M, Sureda A, Mirvaghefi AR, Rafei GR (2011) Effects of long-term silymarin oral supplementation on the blood biochemical profile of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 37:885–896

    Article  CAS  PubMed  Google Scholar 

  • Basiglio CL, Pozzi EJS, Mottino AD, Roma MG (2009) Differential effects of silymarin and its active component silibinin on plasma membrane stability and hepatocellular lysis. Chem Biol Interact 179:297–303

    Article  CAS  PubMed  Google Scholar 

  • Brauge C, Corraze G, Médale F (1995) Effects of dietary levels of carbohydrate and lipid on glucose oxidation and lipogenesis from glucose in rainbow trout, Oncorhynchus mykiss, reared in freshwater or in seawater. Comp Biochem Phys A 111:117–124

    Article  Google Scholar 

  • Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K et al (2009) Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet–induced insulin resistance. Diabetes 58:550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao L, Ding W, Du J, Jia R, Liu Y, Zhao C, Shen Y, Yin G (2015) Effects of curcumin on antioxidative activities and cytokine production in Jian carp (Cyprinuscarpio var. Jian) with CCl4 -induced liver damage. Fish Shellfish Immun 43:150–157

    Article  CAS  Google Scholar 

  • Chen I, Chen Y, Chou C, Chuang R, Sheen L, Chiu C (2012) Hepatoprotection of silymarin against thioacetamide-induced chronic liver fibrosis. J Sci Food Agr 92:1441–1447

    Article  CAS  Google Scholar 

  • Cheng A, Chen C, Liou C, Chang C (2006) Effects of dietary protein and lipids on blood parameters and superoxide anion production in the Grouper, Epinephelus coioides (Serranidae: Epinephelinae). Zool Stud 45:492–502

    CAS  Google Scholar 

  • Chiang J, Kimmel R, Stroup D (2001) Regulation of cholesterol 7α-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRα). Gene 262:257–265

    Article  CAS  PubMed  Google Scholar 

  • Cho C, Watanabe T (1985) Dietary energy and lipid requirements of rainbow trout (Salmo gairdneri) at different water temperatures, energy metabolism of farm animals, proceedings of the 10th symposium EAAP, Airlie, Virginia, pp 206–209

  • Chou C, Chen Y, Hsu M, Tsai W, Chang C, Chiu C (2012) Effect of silymarin on lipid and alcohol metabolism in mice following long-term alcohol consumption. J Food Biochem 36:369–377

    Article  CAS  Google Scholar 

  • Citarasu T (2010) Herbal biomedicines: a new opportunity for aquaculture industry. Aquacult Int 18:403–414

    Article  Google Scholar 

  • Coccia E, Varricchio E, Vito P, Turchini GM, Francis D, Paolucci M (2014) Fatty acid-specific alterations in leptin, PPARα, and CPT-1 gene expression in the rainbow trout. Lipids 49:1033–1046

    Article  CAS  PubMed  Google Scholar 

  • Colturato CP, Constantin RP, Maeda AS, Constantin RP, Yamamoto NS, Bracht A, Ishii-Iwamoto EL, Constantin J (2012) Metabolic effects of silibinin in the rat liver. Chem Biol Interact 195:119–132

    Article  CAS  PubMed  Google Scholar 

  • Crocenzi FA, Roma MG (2006) Silymarin as a new hepatoprotective agent in experimental cholestasis: new possibilities for an ancient medication. Curr Med Chem 13:1055–1074

    Article  CAS  PubMed  Google Scholar 

  • Crocenzi FA, Pellegrino JM, Pozzi EJS, Mottino AD, Garay EAR, Roma MG (2000) Effect of silymarin on biliary bile salt secretion in the rat. Biochem Pharmacol 59:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Davis MS, Solbiati J, Cronan JE (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598

    Article  CAS  PubMed  Google Scholar 

  • Dias J, Alvarez M, Diez A, Arzel J, Corraze G, Bautista J, Kaushik S (1998) Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 161:169–186

    Article  CAS  Google Scholar 

  • Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid Peroxidation. Method Enzymol 186:421–431

    Article  CAS  Google Scholar 

  • Du Z, Liu Y, Tian L, Wang J, Wang Y, Liang G (2005) Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquacult Nutr 11:139–146

    Article  CAS  Google Scholar 

  • Du Z, Clouet P, Zheng W, Degrace P, Tian L, Liu Y (2006) Biochemical hepatic alterations and body lipid composition in the herbivorous grass carp (Ctenopharyngodon idella) fed high-fat diets. Brit J Nutr 95:905–915

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Clouet P, Degrace P, Zheng W, Frøyland L, Tian L, Liu Y (2008) Hypolipidaemic effects of fenofibrate and fasting in the herbivorous grass carp (Ctenopharyngodon idella) fed a high-fat diet. Brit J Nutr 100:1200–1212

    Article  CAS  PubMed  Google Scholar 

  • El-Lakkany NM, Hammam OA, El-Maadawy WH, Badawy AA, Ain-Shoka AA, Ebeid FA (2012) Anti-inflammatory/anti-fibrotic effects of the hepatoprotective silymarin and the schistosomicide praziquantel against Schistosoma mansoni-induced liver fibrosis. Parasite Vector 5:21–32

    Article  Google Scholar 

  • El-Sheikh NM, Abd El-Fattah HM (2011) Counteracting methionine choline-deficient diet-induced fatty liver by administration of turmeric and silymarin. J Appl Sci Res 7:1812–1820

    CAS  Google Scholar 

  • Friesen JA, Rodwell VW (2004) The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 5:60

    Article  Google Scholar 

  • Gao W, Liu Y, Tian L, Mai K, Liang G, Yang H, Huai M, Luo W (2010) Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquacult Nutr 16:327–333

    Article  CAS  Google Scholar 

  • Gao W, Liu Y, Tian L, Mai K, Liang G, Yang H, Huai M, Luo W (2011) Protein-sparing capability of dietary lipid in herbivorous and omnivorous freshwater finfish: a comparative case study on grass carp (Ctenopharyngodon idella) and tilapia (Oreochromis niloticus × O. aureus). Aquacult Nutr 17:2–12

    Article  CAS  Google Scholar 

  • Gaylord T, Gatlin D (2000) Dietary lipid level but not l-carnitine affects growth performance of hybrid striped bass (Morone chrysops♀ × M. saxatilis♂). Aquaculture 190:237–246

    Article  CAS  Google Scholar 

  • GaΖák R, Walterová D, Kren V (2007) Silybin and silymarin-new and emerging applications in medicine. Curr Med Chem 14:315–338

    Article  Google Scholar 

  • Halver JE, Hardy RW (2002) Fish nutrition. Academic press, San Diego

    Google Scholar 

  • Henderson RJ, Tocher DR (1987) The lipid composition and biochemistry of freshwater fish. Prog Lipid Res 26:281–347

    Article  CAS  PubMed  Google Scholar 

  • Jain AK, Vargas R, Gotzkowsky S, McMahon FG (1993) Can garlic reduce levels of serum lipids? A controlled clinical study. Am J Med 94:632–635

    Article  CAS  PubMed  Google Scholar 

  • Jensen-Urstad AP, Semenkovich CF (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? BBA Mol Cell Biol L 1821:747–753

    CAS  Google Scholar 

  • Ji H, Li J, Liu P (2011) Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comp Biochem Phys B 159:49–56

    Article  Google Scholar 

  • Jia R, Cao L, Du J, Xu P, Jeney G, Yin G (2013) The protective effect of silymarin on the carbon tetrachloride (CCl4)-induced liver injury in common carp (Cyprinus carpio). In Vitro Cell Dev An 49:155–161

    Article  CAS  Google Scholar 

  • Jin Y, Tian L, Zeng S, Xie S, Yang H, Liang G, Liu Y (2013) Dietary lipid requirement on non-specific immune responses in juvenile grass carp (Ctenopharyngodon idella). Fish Shellfish Immun 34:1202–1208

    Article  CAS  Google Scholar 

  • Ka SO, Kim KA, Kwon KB, Park JW, Park BH (2009) Silibinin attenuates adipogenesis in 3T3-L1 preadipocytes through a potential upregulation of the insig pathway. Int J Mol Med 23:633–637

    CAS  PubMed  Google Scholar 

  • Karalazos V, Bendiksen EÅ, Dick JR, Bell JG (2007) Effects of dietary protein and fatlevel and rapeseed oil on growth and tissue fatty acid composition and metabolism in Atlantic salmon (Salmo salar L.) reared at low water temperatures. Aquacult Nutr 13:256–265

    Article  CAS  Google Scholar 

  • Karalazos V, Bendiksen EÅ, Bell JG (2011) Interactive effects of dietary protein/lipid level and oil source on growth, feed utilisation and nutrient and fatty acid digestibility of Atlantic salmon. Aquaculture 311:193–200

    Article  CAS  Google Scholar 

  • Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. BBA Mol Cell Biol L 1486:1–17

    CAS  Google Scholar 

  • Kolodziej MP, Zammit VA (1990) Sensitivity of inhibition of rat liver mitochondrial outer-membrane carnitine palmitoyltransferase by malonyl-CoA to chemical-and temperature-induced changes in membrane fluidity. Biochem J 272:421–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köprücü K (2012) Effects of dietary protein and lipid levels on growth, feed utilization and body composition of juvenile grass carp (Ctenopharyngodon idella). J Fish Sci 6:243–251

    Google Scholar 

  • Kratky D, Obrowsky S, Kolb D, Radovic B (2014) Pleiotropic regulation of mitochondrial function by adipose triglyceride lipase-mediated lipolysis. Biochimie 96:106–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ (2011) The resurgence of hormone-sensitive lipase (HSL) in mammalian lipolysis. Gene 477:1–11

    Article  CAS  PubMed  Google Scholar 

  • Leng X, Wu X, Tian J, Li X, Guan L, Weng D (2012) Molecular cloning of fatty acid synthase from grass carp (Ctenopharyngodon idella) and the regulation of its expression by dietary fat level. Aquacult Nutr 18:551–558

    Article  CAS  Google Scholar 

  • Lewis-McCrea LM, Lall SP (2007) Effects of moderately oxidized dietary lipid and the role of vitamin E on the development of skeletal abnormalities in juvenile Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 262:142–155

    Article  CAS  Google Scholar 

  • Li X, Liu W, Lu K, Xu W, Wang Y (2012) Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immun 33:316–323

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtimequantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Xu W, Li J, Li X, Huang G, Liu W (2013a) Alterations of liver histology and blood biochemistry in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish Sci 79:661–671

    Article  CAS  Google Scholar 

  • Lu K, Xu W, Li X, Liu W, Wang L, Zhang C (2013b) Hepatic triacylglycerol secretion, lipid transport and tissue lipid uptake in blunt snout bream (Megalobrama amblycephala) fed high-fat diet. Aquaculture 408:160–168

    Article  Google Scholar 

  • Lu K, Xu W, Wang L, Zhang D, Zhang C, Liu W (2014) Hepatic β-oxidation and regulation of carnitine palmitoyltransferase (CPT) I in blunt snout bream Megalobrama amblycephala fed a high fat diet. PLoS ONE 9:e93135

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludovico A, Gabriella A, Raffaele C, Natasa M, Francesco C (2011) Milk thistle for treatment of nonalcoholic fatty liver disease. Hepat Mon 11:173–177

    Google Scholar 

  • Ma J, Shao Q, Xu Z, Zhou F, Zhong G, Song W, Owari NB (2009) Effects of dietary n-3 HUFA on growth performance and lipid metabolism in juvenile black sea bream, Sparus macrocephalus. J Fish China 33:639–648

    CAS  Google Scholar 

  • Martino RC, Cyrino JEP, Portz L, Trugo LC (2002) Effect of dietary lipid level on nutritional performance of the surubim, Pseudoplatystoma coruscans. Aquaculture 209:209–218

    Article  CAS  Google Scholar 

  • Metwally M, El-Gellal A, El-Sawaisi S (2009) Effects of silymarin on lipid metabolism in rats. World Appl Sci J 6:1634–1637

    CAS  Google Scholar 

  • Morais S, Bell JG, Robertson DA, Roy WJ, Morris PC (2001) Protein/lipid ratios in extruded diets for Atlantic cod (Gadus morhua L.): effects on growth, feed utilisation, muscle composition and liver histology. Aquaculture 203:101–119

    Article  CAS  Google Scholar 

  • Morash AJ, Bureau DP, McClelland GB (2009) Effects of dietary fatty acid composition on the regulation of carnitine palmitoyltransferase (CPT) I in rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys B 152:85–93

    Article  Google Scholar 

  • Nanton DA, Lall SP, Ross NW, McNiven MA (2003) Effect of dietary lipid level on fatty acid β-oxidation and lipid composition in various tissues of haddock, Melanogrammus aeglefinus L. Comp Biochem Phys B 135:95–108

    Google Scholar 

  • Peng M, Xu W, Mai K, Zhou H, Zhang Y, Liufu Z, Zhang K, Ai Q (2014) Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus, L.) fed diets with various fish oil substitution levels by soybean oil. Aquaculture 433:442–449

    Article  CAS  Google Scholar 

  • Peres H, Oliva-Teles A (1999) Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles (Dicentrarchus labrax). Aquaculture 179:325–334

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash P, Singh V, Jain M, Rana M, Khanna V, Barthwal MK, Dikshit M (2014) Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat. Eur J Pharmacol 727:15–28

    Article  CAS  PubMed  Google Scholar 

  • Reddy BS, Mangat S, Sheinfil A, Weisburger JH, Wynder EL (1977) Effect of type and amount of dietary fat and 1, 2-dimethylhydrazine on biliary bile acids, fecal bile acids, and neutral sterols in rats. Cancer Res 37:2132–2137

    CAS  PubMed  Google Scholar 

  • Regost C, Arzel J, Cardinal M, Robin J, Laroche M, Kaushik S (2001) Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Psetta maxima). Aquaculture 193:291–309

    Article  CAS  Google Scholar 

  • Reid BN, Ables GP, Otlivanchik OA, Schoiswohl G, Zechner R, Blaner WS, Goldberg IJ, Schwabe RF, Chua SC Jr, Huang LS (2008) Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J Biol Chem 283:13087–13099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberti R, Mozzi R, De Medio GE, Francescangeli E, Porcellati G (1973) The activity of silymarin on membrane-bound phospholipid metabolism in brain and liver tissues of the rat. Pharmacol Res Commun 5:249–257

    Article  CAS  Google Scholar 

  • Rolo AP, Teodoro JS, Palmeira CM (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radical Bio Med 52:59–69

    Article  CAS  Google Scholar 

  • Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Ann Rev Biochem 72:137–174

    Article  CAS  PubMed  Google Scholar 

  • Salamone F, Galvano F, Cappello F, Mangiameli A, Barbagallo I, Volti GL (2012) Silibinin modulates lipid homeostasis and inhibits nuclear factor kappa B activation in experimental nonalcoholic steatohepatitis. Transl Res 159:477–486

    Article  CAS  PubMed  Google Scholar 

  • Sanchez R, Olivares P, Carmona E, Astuya A, Herrera H, Parodi J (2016) Fish Nutrition Additives in SHK-1 Cells: protective effects of silymarin. Adv Biosci Biotechnol 7:55–62

    Article  Google Scholar 

  • Shaker E, Mahmoud H, Mna S (2010) Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem Toxicol 48:803–806

    Article  CAS  PubMed  Google Scholar 

  • Škottová N, Večeřa R, Urbánek K, Váňa P, Walterová D, Cvak L (2003) Effects of polyphenolic fraction of silymarin on lipoprotein profile in rats fed cholesterol-rich diets. Pharmacol Res 47:17–26

    Article  PubMed  Google Scholar 

  • Škottová N, Kazdová L, Oliyarnyk O, Večeřa R, Sobolová L, Ulrichová J (2004) Phenolics-rich extracts from Silybum marianum and Prunella vulgaris reduce a high-sucrose diet induced oxidative stress in hereditary hypertriglyceridemic rats. Pharmacol Res 50:123–130

    Article  PubMed  Google Scholar 

  • Sobolová L, Škottová N, Večeřa R, Urbánek K (2006) Effect of silymarin and its polyphenolic fraction on cholesterol absorption in rats. Pharmacol Res 53:104–112

    Article  PubMed  Google Scholar 

  • Steffens W (1996) Protein sparing effect and nutritive significance of lipid supplementation in carp diets. Arch Anim Nutr 49:93–98

    CAS  Google Scholar 

  • Stéphan G, Guillaume J, Lamour F (1995) Lipid peroxidation in turbot (Scophthalmus maximus) tissue: effect of dietary vitamin E and dietary n − 6 or n − 3 polyunsaturated fatty acids. Aquaculture 130:251–268

    Article  Google Scholar 

  • Suh HJ, Cho SY, Kim EY, Choi HS (2015) Blockade of lipid accumulation by silibinin in adipocytes and zebrafish. Chem Biol Interact 227:53–62

    Article  CAS  PubMed  Google Scholar 

  • Surai PF (2015) Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants 4:204–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Tuorkey MJ, El-Desouki NI, Kamel RA (2015) Cytoprotective effect of silymarin against diabetes-induced cardiomyocyte apoptosis in diabetic rats. Biomed Environ Sci 28:36–43

    Article  PubMed  Google Scholar 

  • Vargas-Mendoza N, Madrigal-Santillán E, Morales-González A, Esquivel-Soto J, Esquivel-Chirino C, García-Luna Y, Gayosso-de-Lucio JA, Morales-González JA (2014) Hepatoprotective effect of silymarin. World J Hepatol 6:144–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Vecera R, Zacharova A, Orolin J, Skottova N, Anzenbacher P (2011) The effect of silymarin on expression of selected ABC transporters in the rat. Vet Med Czech 56:59–62

    CAS  Google Scholar 

  • Vergara JM, Robainà L, Izquierdo M, Higuera MDL (1996) Protein sparing effect of lipids in diets for fingerlings of gilthead sea bream. Fish Sci 62:624–628

    Article  CAS  Google Scholar 

  • Wang J, Liu Y, Tian L, Mai K, Du Z, Wang Y, Yang H (2005) Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 249:439–447

    Article  CAS  Google Scholar 

  • Wang X, Chowdhury JR, Chowdhury NR (2006) Bilirubin metabolism: applied physiology. Curr Paediatr 16:70–74

    Article  Google Scholar 

  • Wang A, Han G, Wei X, Liu B, Lv F, Feng G, Qi Z, Wang T, Xu P, Yang Z (2010) Molecular cloning of fatty acid synthase from gift tilapia (Oreochromis niloticus): response of its expression to refeeding and different lipid levels in diet. J Fish China 34:1113–1120

    CAS  Google Scholar 

  • Yamamoto T, Iwashita Y, Matsunari H, Sugita T, Furuita H, Akimoto A, Okamatsu K, Suzuki N (2010) Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture 309:173–180

    Article  CAS  Google Scholar 

  • Yang S, Liu F, Liou C (2012) Effects of dietary L-carnitine, plant proteins and lipid levels on growth performance, body composition, blood traits and muscular carnitine status in juvenile silver perch (Bidyanus bidyanus). Aquaculture 342:48–55

    Article  Google Scholar 

  • Yao J, Zhi M, Minhu C (2011) Effect of silybin on high-fat-induced fatty liver in rats. Braz J Med Biol Res 44:652–659

    CAS  PubMed  Google Scholar 

  • Yao J, Zhi M, Gao X, Hu P, Li C, Yang X (2013) Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver. Braz J Med Biol Res 46:270–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi D, Gu L, Ding B, Li M, Hou Y, Wang L, Gong J (2012) Effects of dietary silymarin supplementation on growth performance and oxidative status in Carassius auratus gibelio. J Anim Vet Adv 11:3399–3404

    Article  Google Scholar 

  • Zhang Y, Hai J, Cao M, Zhang Y, Pei S, Wang J, Zhang Q (2013) Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway. Int Immunopharmacol 17:714–720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the National Basic Research Program of China Project No. 2014CB138603, Plan for Outstanding Young of Beijing Academy of Science and Technology Project No. 201420 and the fund of Beijing sunpu biochem. tech. co., Ltd, China. We thank Hua cheng aquaculture farm (Jiangsu, China) for their juvenile fish and School of Basic Medicine and Biological Science, Soochow University, for rearing condition support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, P., Ji, H., Ye, Y. et al. Dietary silymarin supplementation promotes growth performance and improves lipid metabolism and health status in grass carp (Ctenopharyngodon idellus) fed diets with elevated lipid levels. Fish Physiol Biochem 43, 245–263 (2017). https://doi.org/10.1007/s10695-016-0283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0283-6

Keywords

Navigation