Skip to main content
Log in

Demonstration of primary cilia and acetylated α-tubulin in fish endothelial, epithelial and fibroblast cell lines

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Primary cilia (PC) were demonstrated for the first time in fish endothelial, epithelial and fibroblast cell lines through immunofluorescence staining with the monoclonal antibody, 6-11B-1, against acetylated α-tubulin. The study was carried out with eight recently developed cell lines from the walleye, Sander vitreus (Mitchill). These were three fibroblast-like cell lines, WE-cfin11f, WE-skin11f and WE-liver3 from, respectively, the caudal fin, skin and liver, and three epithelial-like cell lines, WE-cfin11e, WE-spleen6 and WErpe from, respectively, the caudal fin, spleen and retina. Also, endothelial-like WEBA from the bulbus arteriosus and glial-like WE-brain5 from the brain were used. Immunocytochemistry revealed strong staining for acetylated α-tubulin in mitotic spindles and midbodies for all cell lines, and in PC for all cell lines except WE-skin11f. Staining of cytoplasmic microtubules (fibrils) was absent in three cell lines, including WEBA, but present in the others, especially WE-skin11f, which might have obscured PC detection in these cells. Tubacin, an inhibitor of histone deacetylase 6, induced cytoplasmic fibrils in WEBA and the intensity of their staining in WE-cfin11f. These results suggest that the cell lines might differ in their deacetylase activities, making them useful for studying this tubulin modification in teleosts, as well as for studying PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbot S, Morrissette NS, Dougan ST, Kipreos ET, Gaertig J (2010) MEC-17 is an alpha-tubulin acetyltransferase. Nature 467:218–222. doi:10.1038/nature09324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alieva IB, Vorobjev IA (2004) Vertebrate primary cilia: a sensory part of centrosomal complex in tissue cells, but a “sleeping beauty” in cultured cells? Cell Biol Int 28:139–150

    Article  PubMed  Google Scholar 

  • Alieva IB, Gorgidze LA, Komarova YA, Chernobelskaya OA, Vorobjev IA (1999) Experimental model for studying the primary cilia in tissue culture cells. Membr Cell Biol 12:895–905

    CAS  PubMed  Google Scholar 

  • Ando J, Yamamoto K (2013) Flow detection and calcium signalling in vascular endothelial cells. Cardiovasc Res 99:260–268. doi:10.1093/cvr/cvt084

    Article  CAS  PubMed  Google Scholar 

  • Billger M, Stromberg E, Wallin M (1991) Microtubule-associated proteins-dependent colchicine stability of acetylated cold-labile brain microtubules from the Atlantic cod, Gadus morhua. J Cell Biol 113:331–338

    Article  CAS  PubMed  Google Scholar 

  • Black MM, Keyser P (1987) Acetylation of α-tubulin in cultured neurons and the induction of α-tubulin acetylation in PC12 cells by treatment with nerve growth factor. J Neurosci 7:1833–1842

    CAS  PubMed  Google Scholar 

  • Boehlke C, Kotsis Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Godel M, Muller K, Herbst M, Hornung M, Doerken M, Kottgen M, Nitschke R, Igarashi P, Walz G, Kuehn EW (2010) Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 12:1115–1122. doi:10.1038/ncb2117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boggs AE, Vitolo MI, Whipple RA, Charpentier MS, Goloubeva OG, Ioffe OB, Tuttle KC, Slovic J, Lu Y, Mills GB, Martin SS (2014) α-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res 75:203–215. doi:10.1158/0008-5472.CAN-13-3563

    Article  PubMed Central  PubMed  Google Scholar 

  • Briffeuil P, Thibautverycruyssen R, Ronveauxdupal MF (1994) Ciliation of bovine arotic endothelial cells in culture. Atherosclerosis 106:75–81

    Article  CAS  PubMed  Google Scholar 

  • Brown JAL, Santra T, Owens P, Morrison AM, Barry F (2014) Primary cilium-associated genes mediate bone marrow stromal cell response to hypoxia. Stem cell Res 13:284–299. doi:10.1016/j.scr.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  • Buckland-Nicks JA, Gillis M, Reimchen TE (2012) Neural network detected in a presumed vestigial trait: ultrastructure of the salmonid adipose fin. Proc R Soc B 279:553–563. doi:10.1098/rspb.2011.1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cambray-Deakin MA, Robson SJ, Burgoyne RD (1988) Colocalization of acetylated microtubules, glia filaments, and mitochondria in astrocytes in vitro. Cytoskeleton 10:438–449

    Article  CAS  Google Scholar 

  • Casale CH, Previtali G, Barra HS (2003) Involvement of acetylated tubulin in the regulation of Na+, K+-ATPase activity in cultured astrocytes. FEBS Letts 534:115–118

    Article  CAS  Google Scholar 

  • Chitnis AB, Kuwada JY (1990) Axonogenesis in the brain of zebrafish embryos. J Neurosci 10:1892–1905

    CAS  PubMed  Google Scholar 

  • Curtis TM, Howard A, Gerlach B, Brennan LM, Widder MW, van der Schalie WH, Vo NTK, Bols NC (2013) Suitability of invertebrate and vertebrate cells in a portable impedance-based toxicity sensor: temperature mediated impacts on long-term survival. Tox In Vitro 27(7):2061–2066. doi:10.1016/j.tiv.2013.07.007

    Article  CAS  Google Scholar 

  • D’Angelo A, Franco B (2011) The primary cilium in different tissues-lessons from patients and animal models. Pediatr Nephrol 26:655–662. doi:10.1007/s00467-010-1650-7

    Article  PubMed  Google Scholar 

  • DeVaul N, Wang R, Sperry AO (2013) PPP1R42, a PP1 binding protein, regulates centrosome dynamics in ARPE-19 cells. Biol Cell 105:359–371. doi:10.1111/boc.201300019

    Article  CAS  PubMed  Google Scholar 

  • Farrell AP, Jones DR (1992) The heart. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology. Part A: the cardiovascular system, vol 12. Academic Press, Inc, San Diego, CA, pp 1–87

  • Fenton R, Mathias JA, Moodie GEE (1996) Recent and future demand for walleye in North America. Fisheries 21:6–12

    Article  Google Scholar 

  • Geerts WJC, Vocking K, Schoonen N, Haarbosch L, Donselaar EG, Regan-Klapisz E, Post JA (2011) Cobbelstone HUVECs: a model system for studying primary ciliogenesis. J Struct Biol 176:350–359. doi:10.1016/j.jsb.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  • Gignac SJ, Vo NTK, Mikhaeil MS, Alexander JAN, MacLatchy DL, Schulte PM, Lee LEJ (2014) Derivation of a continuous myogenic cell culture from embryos of common killifish, Fundulus heteroclitus. Comp Biochem Physiol Part A 175:15–27. doi:10.1016/j.cbpa.2014.05.002

    Article  CAS  Google Scholar 

  • Goetz JG, Steed E, Ferreira RR, Roth S, Ramspacher C, Boselli F, Chavin G, Liebling M, Wyart C, Schwab Y (2014) Endothelial cilia mediate low sensing during zebrafish vascular development. Cell Rep 6:799–808. doi:10.1016/j.celrep.2014.01.032

    Article  CAS  PubMed  Google Scholar 

  • Guemez-Gamboa A, Coufal NG, Gleeson JG (2014) Primary cilia in the developing and mature brain. Neuron 82:511–521. doi:10.1016/j.neuron.2014.04.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schrieber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deactylation. PNAS 100:4389–4394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoey DA, Tormey S, Ramcharan S, O’Brien FJ, Jacobs CR (2012) Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells 30:2561–2570. doi:10.1002/stem.1235

    Article  PubMed Central  PubMed  Google Scholar 

  • Husain M, Harrod KS (2011) Enhanced acetylation of alpha-tubulin in influenza A virus infected epithelial cells. FEBS Letts 585:128–132. doi:10.1016/j.febslet.2010.11.023

    Article  CAS  Google Scholar 

  • Inks ES, Josey BJ, Jesinkey SR, Chou CJ (2011) A novel class of small molecule inhibitors of HDAC6. ACS Chem Biol 7:331–339. doi:10.1021/cb200134p

    Article  PubMed Central  PubMed  Google Scholar 

  • Iomini C, Tejada K, Mo W, Vaananen H, Piperno G (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164:811–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaluza D, Kroll J, Gesiercih S, Yao T-P, Boon RA, Hergenreider E, Tjwa M, Rossig L, Seto E, Augustin HG, Ziher AM, Dimmeler S, Urbich C (2011) Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J 30:4142–4156. doi:10.1038/emboj.2011.298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kannarkat GT, Tuma DJ, Tuma PL (2006) Microtubules are more stable and more highly acetylated in ethanol-treated hepatic cells. J Hepatol 44(5):963–970

  • Kozlov MV, Kleymenova AA, Konduktorov KA, Malikova AZ, Kochetkov SN (2014) Selective inhibitor of histone deacetylase 6 (tubastatin A) suppresses proliferation of hepatitis C virus replicon in culture of human hepatocytes. Biochem 79:637–642. doi:10.1134/S0006297914070050

    CAS  Google Scholar 

  • Lessman CA, Zhang J, MacRae TH (1993) Posttranslational modifications and assembly characteristics of goldfish tubulin. Biol Cell 79:63–70

    Article  CAS  PubMed  Google Scholar 

  • Modig C, Stromberg E, Wallin M (1994) Different stability of posttranslationally modified brain microtubules isolated from cold-temperate fish. Mol Cell Biochem 130:137–147

    Article  CAS  PubMed  Google Scholar 

  • Muff MA, Masyuk TV, Stroope AJ, Huang BQ, Splinter PL, Lee S-O, LaRusso NF (2006) Development and characterization of cholangiocyte cell line from the PCK rat, an animal model of autosomal recessive polycystic kidney disease. Lab Invest 86:940–950

    Article  CAS  PubMed  Google Scholar 

  • Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171. doi:10.1161/CIRCULATIONAHA.107.710111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newton CM, Stoyek MR, Croll RP, Smith FM (2014) Regional innervation of the heart in the goldfish, Carassius auratus: a confocal microscope study. J Comp Neurol 522:456–478. doi:10.1002/cne.23421

    Article  CAS  PubMed  Google Scholar 

  • Noack M, Leyk J, Richter-Landsberg C (2014) HDAC6 inhibition results in Tau acetylation and modulates Tau phosphorylation and degradation in oligodendrocytes. Glia 62:535–547. doi:10.1002/glia.22624

    Article  PubMed  Google Scholar 

  • Oh EC, Vasanth S, Katsanis N (2015) Metabolic regulation and energy homeostasis through the primary cilium. Cell Metab 21:21–31. doi:10.1016/j.cmet.2014.11.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olsson C, Holmberg A, Holmgren S (2008) Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut. J Comp Neurol 508:756–770. doi:10.1002/cne.21705

    Article  PubMed  Google Scholar 

  • Palazzo A, Ackerman B, Gundersen GG (2003) Tubulin acetylation and cell motility. Nature 421:230

    Article  CAS  PubMed  Google Scholar 

  • Perdiz D, Mackeh R, Pous C, Baillet A (2011) The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal 23:763–771. doi:10.1016/j.cellsig.2010.10.014

    Article  CAS  PubMed  Google Scholar 

  • Piperno G, Fuller MT (1985) Monoclonal antibodies specific for an acetylated form of α-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol 101:2085–2094

    Article  CAS  PubMed  Google Scholar 

  • Piperno G, LeDizet M, Chang X-J (1987) Microtubules containing acetylated α-tubulin in mammalian cells in culture. J Cell Biol 104:289–302

    Article  CAS  PubMed  Google Scholar 

  • Prodromou NV, Thompson CL, Osborn DPS, Cogger KF, Ashworth R, Knight MM, Beales PL, Chapple JP (2012) Heat shock induces rapid resorption of primary cilia. J Cell Sci 125:4297–4305. doi:10.1242/jcs.100545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Proulx-Bonneau S, Annabi B (2011) The primary cilium as a biomarker in the hypoxic adaptation of bone marrow-derived mesenchymal stromal cells: a role for the secreted frizzled-related proteins. Biomarker Insights 2011:6. doi:10.4137/BMI.S8247

    Google Scholar 

  • Reed NA, Cai D, Blasius T, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172

    Article  CAS  PubMed  Google Scholar 

  • Rutberg M, Billger M, Modig C, Wallin M (1995) Distribution of acetylated tubulin in cultured cells and tissues from the Atlantic cod (Gadus morhua). Role of acetylation in cold adaptation and drug stability. Cell Biol Int 19:749–758

    Article  CAS  PubMed  Google Scholar 

  • Sadoul K, Wang J, Diagouraga B, Khochbin S (2011) The tale of protein lysine acetylation in the cytoplasm. J Biomed Biotech 2011:970382. doi:10.1155/2011/970382

    Article  Google Scholar 

  • Schneider L, Cammer M, Lehman J, Nielsen K, Guerra CF, Veland IR, Stock C, Hoffman EK, Yoder BK, Schwab A, Satir P, Christensen ST (2010) Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 25:279–292. doi:10.1159/000276562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seidel C, Schnekenburger M, Dicato M, Diederich M (2015) Histone deacetylase 6 in health and disease. Epigenomics 7:103–118. doi:10.2217/epi.14.69

    Article  CAS  PubMed  Google Scholar 

  • Sever L, Vo NTK, Bols NC, Dixon B (2014) Expression of tapasin in rainbow trout tissues and cell lines and up regulation in a monocyte/macrophage cell line (RTS11) by a viral mimic and viral infection. Dev Comp Immunol 44(1):86–93. doi:10.1016/j.dci.2013.11.019

    Article  CAS  PubMed  Google Scholar 

  • Shunong Y, Wolska-Klis M, Cann JR (1991) Gel electrophoresis of reacting molecules. Rate-limited self-association. Anal Biochem 196:192–198

    Article  Google Scholar 

  • Skoge RH, Dolle C, Ziegler M (2014) Regulation of SIRT2-dependent α-tubulin deacetylation by cellular NAD levels. DNA Repair 23:33–38. doi:10.1016/j.dnarep.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  • Van der Heiden K et al (2006) Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn 235:19–28

    Article  PubMed  Google Scholar 

  • Vo NTK, Bender AW, Ammendolia DA, Lumsden JS, Dixon B, Bols NC (2015a) Development of a walleye spleen stromal cell line sensitive to viral hemorrhagic septicemia virus (VHSV IVb) and to protection by synthetic dsRNA. Fish Shellfish Immunol 45(1):83–93. doi:10.1016/j.fsi.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  • Vo NTK, Bender AW, Lee LEJ, Lumsden JS, Lorenzen N, Dixon B, Bols NC (2015b) Development of a walleye cell line and use to study the effects of temperature on infection by viral haemorrhagic septicemia virus group IVb. J Fish Dis 38(2):121–136. doi:10.1111/jfd.12208

    Article  CAS  PubMed  Google Scholar 

  • Vo NTK, Bender AW, Lumsden JS, Dixon B, Bols NC (2015c) Differential viral haemorrhagic septicemia virus genotype IVb infection in fibroblast and epithelial cell lines from walleye caudal fin at cold temperatures. J Fish Dis. doi:10.1111/jfd.12345

    Google Scholar 

  • Vo NTK, Chen C, Lee LEJ, Lumsden JS, Dixon B, Bols NC (2015d) Development and characterization of an endothelial cell line from the bulbus arteriosus of walleye, Sander vitreus. Comp Biochem Physiol A: Mol Integr Physiol 180:57–67. doi:10.1016/j.cbpa.2014.10.027

    Article  Google Scholar 

  • Vo NTK, Mikhaeil MS, Lee LEJ, Pham PH, Bols NC (2015e) Senescence-associated β-galactosidase staining in fish cell lines and primary cultures from several tissues and species, including rainbow trout coelomic fluid and milt. In Vitro Cell Dev Biol Animal 51(4):361–371. doi:10.1007/s11626-014-9837-z

    Article  Google Scholar 

  • Wang W, Brautigan DL (2009) Phosphatase inhibitor 2 promotes acetylation of tubulin in the primary cilium of human retinal epithelial cells. BMC Cell Biol 9:62. doi:10.1186/1471-2121-9-62

    Article  CAS  Google Scholar 

  • Wen CM, Wang CS, Chin TC, Cheng ST, Nan FH (2010) Immunochemical and molecular characterization of a novel cell line derived from the brain of Trachinotus blochii (Teleostei, Perciformes): a fish cell line with oligodendrocyte progenitor cell and tanycyte characteristics. Comp Biochem Physiol A: Mol Integr Physiol 156(2):224–231. doi:10.1016/j.cbpa.2010.02.003

    Article  Google Scholar 

  • Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Internat 20:73–81

    Article  CAS  Google Scholar 

  • Yuan K, Frolova N, Xie Y, Wang D, Cook L, Kwon YJ, Steg AD, Serra R, Frost AR (2010) Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J Histochem Cytochem 58:857–870. doi:10.1369/jhc.2010.955856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou X, Fan LX, Li K, Ramchandran R, Calvet JP, Li X (2014) SIRT2 regulates ciliogenesis and contributes to abnormal centrosome amplification caused by loss of polycystin-1. Human Mol Genetics 23:1644–1655. doi:10.1093/hmg/ddt556

    Article  CAS  Google Scholar 

  • Zhu D, Shi S, Wang H, Liao K (2009) Growth arrest induces primary-cilium formation and sensitizes IGF-1—receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J Cell Sci 122(Pt 15):2760–2768. doi:10.1242/jcs.046276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to NCB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen T. K. Vo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, N.T.K., Bols, N.C. Demonstration of primary cilia and acetylated α-tubulin in fish endothelial, epithelial and fibroblast cell lines. Fish Physiol Biochem 42, 29–38 (2016). https://doi.org/10.1007/s10695-015-0114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0114-1

Keywords

Navigation