Skip to main content
Log in

Effects of short-chain fructooligosaccharides (scFOS) and rearing temperature on growth performance and hepatic intermediary metabolism in gilthead sea bream (Sparus aurata) juveniles

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The effect of dietary short-chain fructooligosaccharides (scFOS) incorporation on growth, feed utilization, body composition, plasmatic metabolites and liver activity of key enzymes of lipogenic and amino acid catabolic pathways was evaluated in gilthead sea bream reared at 18 and 25 °C. Four practical diets containing plant ingredients and fish meal (50:50) as protein sources and supplemented with 0, 0.1, 0.25 and 0.5 % scFOS were fed to triplicate groups of fish for 8 weeks. Growth performance, feed efficiency and nitrogen retention were higher at 25 °C. In fish reared at 18 °C, there was a positive correlation between dietary scFOS concentration and growth. At 18 °C, liver glycogen was higher in fish fed the control diet, while at 25 °C it was higher in fish fed the 0.5 % scFOS diet. Plasma cholesterol LDL was lower in fish fed 0.25 % scFOS diet, and in fish reared at 18 °C plasma glucose was higher in fish fed the 0.1 % scFOS diet. Glucose 6-phosphate dehydrogenase, fatty acid synthetase and aspartate aminotransferase (ASAT) activities were higher in fish reared at 18 °C, whereas alanine aminotransferase activity was higher in fish reared at 25 °C. scFOS affected ASAT activity, which was lower in fish fed 0.25 % scFOS diet. Although, scFOS seemed to have no major effects on gilthead sea bream metabolism, the positive correlation between dietary prebiotic incorporation and growth at 18 °C indicates a beneficial effect of scFOS in fish reared at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ai Q, Xu H, Mai K, Xu W, Wang J, Zhang W (2011) Effects of dietary supplementation of Bacillus subtilis and fructooligosaccharide on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea. Aquaculture 317:155–161

    Article  CAS  Google Scholar 

  • AOAC (2000) Official methods of analysis. Association of Official Analytical Chemists, Gaithersburg

    Google Scholar 

  • Beutler HO (1984) Starch. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 6. Verlag Chemie, Weinheim, pp 2–10

    Google Scholar 

  • Bornet FRJ, Brouns F, Tashiro Y, Duvillier V (2002) Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Dig Liver Dis 34:S111–S120

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buentello JA, Neill WH, Gatlin DM (2010) Effects of dietary prebiotics on the growth, feed efficiency and non-specific immunity of juvenile red drum Sciaenops ocellatus fed soybean-based diets. Aquac Res 41:411–418

    Article  CAS  Google Scholar 

  • Delzenne NM, Cani PD, Neyrinck AM (2008) Prebiotics and lipid metabolism. In: Versalovic J, Wilson M (eds) Therapeutic microbiogy: probiotics and related strategies. ASM press, Washington, DC, pp 183–192

  • Delzenne NM, Daubioul C, Neyrinck A, Lasa M, Taper HS (2002) Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br J Nutr 87:S255–S259

    Article  CAS  PubMed  Google Scholar 

  • Denev S, Staykov Y, Moutafchieva R, Beev G (2009) Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res 1:1–29

    Google Scholar 

  • Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production—a mediterranean perspective. Fish Shellfish Immunol 30:1–16

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonie microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Gobinath D, Madhu AN, Prashant G, Srinivasan K, Prapulla SG (2010) Beneficial effect of xylo-oligosaccharides and fructo-oligosaccharides in streptozotocin-induced diabetic rats. Br J Nutr 104:40–47

    Article  CAS  PubMed  Google Scholar 

  • Grisdale-Helland B, Helland SJ, Gatlin DM III (2008) The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture 283:163–167

    Article  CAS  Google Scholar 

  • Guerreiro I, Enes P, Merrifield D, Davies S, Oliva-Teles A (2014a) Effects of short-chain fructooligosaccharides on growth performance and hepatic intermediary metabolism in turbot (Scophthalmus maximus) reared at winter and summer temperatures. Aquac Nutr. doi:10.1111/anu.12175

    Google Scholar 

  • Guerreiro I, Pérez-Jiménez A, Costas B, Oliva-Teles A (2014b) Effect of temperature and short chain fructooligosaccharides supplementation on the hepatic oxidative status and immune response of turbot (Scophthalmus maximus). Fish Shellfish Immunol 40:570–576

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro I, Enes P, Rodiles A, Merrifield D, Oliva-Teles A (2015a) Effects of rearing temperature and dietary short-chain fructooligosaccharides supplementation on allochthonous gut microbiota, digestive enzymes activities and intestine health of turbot (Scophthalmus maximus L.) juveniles. Aquac Nutr doi:10.1111/anu.12277

  • Guerreiro I, Oliva-Teles A, Enes P (2015b) Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture 441:57–63

    Article  CAS  Google Scholar 

  • Hagi T, Tanka D, Iwamura Y, Hoshino T (2004) Diversity and seasonal changes in lactic acid bacteria in the intestinal tract of cultured freshwater fish. Aquaculture 234:335–346

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Mirvaghefi A, Amiri BM, Rostami HK, Merrifield DL (2011a) The effects of oligofructose on growth performance, survival and autochthonous intestinal microbiota of beluga (Huso huso) juveniles. Aquac Nutr 17:498–504

    Article  CAS  Google Scholar 

  • Hoseinifar SH, Mirvaghefi A, Merrifield DL, Amiri BM, Yelghi S, Bastami KD (2011b) The study of some haematological and serum biochemical parameters of juvenile beluga (Huso huso) fed oligofructose. Fish Physiol Biochem 37:91–96

    Article  CAS  PubMed  Google Scholar 

  • Hoseinifar SH, Soleimani N, Ringø E (2014) Effects of dietary fructo-oligosaccharide supplementation on the growth performance, haemato-immunological parameters, gut microbiota and stress resistance of common carp (Cyprinus carpio) fry. Br J Nutr 112:1296–1302

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang YJ, Wang L, Jiang KY (2008) Influence of several non-nutrient additives on nonspecific immunity and growth of juvenile turbot, Scophthalmus maximus L. Aquac Nutr 14:387–395

    Article  CAS  Google Scholar 

  • Mahious AS, Gatesoupe FJ, Hervi M, Metailler R, Ollevier F (2006) Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758). Aquac Int 14:219–229

    Article  CAS  Google Scholar 

  • Merrifield DL, Carnevali O (2014) Probiotic Modulation of the Gut Microbiota of Fish. In: Merrifield DL, Ringø E (eds) Aquaculture nutrition: gut health, probiotics and prebiotics. Wiley, Chichester, pp 185–222

    Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Castex M, Ringø E (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18

    Article  Google Scholar 

  • Mountfort DO, Campbell J, Clements KD (2002) Hindgut fermentation in three species of marine herbivorous fish. Appl Environ Microbiol 68:1374–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliva-Teles A (2012) Nutrition and health of aquaculture fish. J Fish Dis 35:83–108

    Article  CAS  PubMed  Google Scholar 

  • Ortiz LT, Rebolé A, Velasco S, Rodríguez ML, Treviño J, Tejedor JL, Alzueta C (2013) Effects of inulin and fructooligosaccharides on growth performance, body chemical composition and intestinal microbiota of farmed rainbow trout (Oncorhynchus mykiss). Aquac Nutr 19:475–482

    Article  CAS  Google Scholar 

  • Plummer DT (1987) An Introduction to practical biochemistry, 3rd edn. McGraw-Hill Book, London

    Google Scholar 

  • Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA 101(13):4596–4601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reza A, Abdolmajid H, Abbas M, Abdolmohammad AK (2009) Effect of dietary prebiotic inulin on growth performance, intestinal microflora, body composition and hematological parameters of juvenile beluga, Huso huso (Linnaeus, 1758). J World Aquac Soc 40:771–779

    Article  Google Scholar 

  • Ringø E, Olsen RE, Gifstad TØ, Dalmo RA, Amlund H, Hemre GI, Bakke AM (2010) Prebiotics in aquaculture: a review. Aquac Nutr 16:117–136

    Article  Google Scholar 

  • Ringø E, Dimitroglou A, Hoseinifar SH, Davies SJ (2014) Prebiotics in Finfish: an update. In: Merrifield DL, Ringø E (eds) Aquaculture nutrition: gut health, probiotics and prebiotics. Wiley, Chichester, pp 360–400

    Google Scholar 

  • Soleimani N, Hoseinifar SH, Merrifield DL, Barati M, Abadi ZH (2012) Dietary supplementation of fructooligosaccharide (FOS) improves the innate immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol 32:316–321

    Article  CAS  PubMed  Google Scholar 

  • Song SK, Beck BR, Kim D, Park J, Kim J, Kim HD, Ringø E (2014) Prebiotics as immunostimulants in aquaculture: a review. Fish Shellfish Immunol 40:40–48

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum JE (2009) Prebiotics and lipid metabolism. In: Cho SS, Finocchiaro T (eds) Handbook of prebiotics and probiotics ingredients: health benefits and food applications. CRC Press, USA, pp 209–220

    Google Scholar 

  • Torrecillas S, Makol A, Caballero MJ, Montero D, Ginés R, Sweetman J, Izquierdo M (2011) Improved feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquac Nutr 17:223–233

    Article  CAS  Google Scholar 

  • Torrecillas S, Montero D, Izquierdo M (2014) Improved health and growth of fish fed mannan oligosaccharides: potential mode of action. Fish Shellfish Immunol 36:525–544

    Article  CAS  PubMed  Google Scholar 

  • Torrecillas S, Montero D, Caballero MJ, Robaina L, Zamorano MJ, Sweetman J, Izquierdo M (2015) Effects of dietary concentrated mannan oligosaccharides supplementation on growth, gut mucosal immune system and liver lipid metabolism of European sea bass (Dicentrarchus labrax) juveniles. Fish Shellfish Immunol 42:508–516

    Article  CAS  PubMed  Google Scholar 

  • Verbrugghe A, Hesta M, Gommeren K, Daminet S, Wuyts B, Buyse J, Janssens GPJ (2009) Oligofructose and inulin modulate glucose and amino acid metabolism through propionate production in normal-weight and obese cats. Br J Nutr 102:694–702

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Liu W-B, Li H-Y, Xu W-N, He J-X, Li X-F, Jiang G-Z (2013) Effects of dietary supplementation of fructooligosaccharide on growth performance, body composition, intestinal enzymes activities and histology of blunt snout bream (Megalobrama amblycephala) fingerlings. Aquac Nutr 19:886–894

    Article  CAS  Google Scholar 

  • Ye J-D, Wang K, Li F-D, Sun Y-Z (2011) Single or combined effects of fructo- and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder (Paralichthys olivaceus). Aquac Nutr 17:e902–e911

    Article  Google Scholar 

  • Zhang C-N, Li X-F, Xu W-N, Jiang G-Z, Lu K-L, Wang L-N, Liu W-B (2013) Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis). Fish Shellfish Immunol 35:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Zhang C-N, Tian H-Y, Li X-F, Zhu J, Cai D-S, Xu C, Wang F, Zhang D-D, Liu W-B (2014) The effects of fructooligosaccharide on the immune response, antioxidant capability and HSP70 and HSP90 expressions in blunt snout bream (Megalobrama amblycephala Yih) under high heat stress. Aquaculture 433:458–466

    Article  CAS  Google Scholar 

  • Zhou Q, Buentello JA, Gatlin DM III (2010) Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture 309:253–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through FCT—Foundation for Science and Technology, under the project “PEst-C/MAR/LA0015/2011”. The first and second authors were supported by grants (SFRH/BD/76139/2011 and BPD/39688/2007, respectively) from FCT, Portugal. We would like to express our thanks to Pedro Correia for the assistance during the growth trial. Authors would also thank to Jefo Species-specific additives France, for providing the prebiotic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Guerreiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerreiro, I., Enes, P. & Oliva-Teles, A. Effects of short-chain fructooligosaccharides (scFOS) and rearing temperature on growth performance and hepatic intermediary metabolism in gilthead sea bream (Sparus aurata) juveniles. Fish Physiol Biochem 41, 1333–1344 (2015). https://doi.org/10.1007/s10695-015-0089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0089-y

Keywords

Navigation