Skip to main content
Log in

Roles of selenoprotein antioxidant protection in zebrafish, Danio rerio, subjected to dietary oxidative stress

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In vertebrates, selenium (Se) is an essential micronutrient for vertebrates that is involved in antioxidant protection and thyroid hormone regulation among other roles and functions through its incorporation into proteins, the selenoproteins. Long-chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), are essential nutrients for fish although high dietary levels may lead to increased oxidative stress due to the high degree of unsaturation. The present study investigated the effects of Se supplementation on zebrafish, Danio rerio, oxidative status together with selenoprotein expression profiles when subjected to a high-DHA diet. Fish were fed for 8 weeks with one of the four experimental diets, containing high or low DHA in combination with or without organic Se (7 mg/kg). Fish performance, Se content, fatty acid composition and TBARS of zebrafish were determined, as well as gene expression of selected selenoproteins in liver and muscle. The Se levels in whole fish reflected dietary content. High dietary DHA increased oxidative stress as indicated by reduced growth and high TBARS content, although Se supplementation reduced oxidation. The expression patterns of selenoproteins varied between liver and muscle with only deiodinase type II displaying a transcriptional response when high dietary Se was supplied. High dietary DHA decreased selenoprotein W expression in muscle and sps2 expression in liver regardless of the dietary Se content. These data suggest that oxidative stress protection associated with a high dietary intake of Se may not be solely mediated by transcriptional changes in teleost selenoprotein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BACT:

Beta-actin

B2M:

Beta-2-microglobulin

DIO2:

Deiodinase type II

DHA:

Docosahexaenoic acid

FAME:

Fatty acid methyl esters

GPX:

Glutathione peroxidase

LC-PUFA:

Long-chain polyunsaturated fatty acid

NTC:

No-template control

PIn:

Peroxidation index

qPCR:

Quantitative PCR

RO:

Rapeseed oil

ROS:

Reactive oxygen species

SGR:

Specific growth rate

SEM:

Standard error of the mean

SECP43:

tRNA selenocysteine 1-associated protein 1b

SEP15:

15 kDa Selenoprotein

SEPP1a:

Selenoprotein P1

SEPW:

Selenoprotein W

SPS2:

Selenophosphate synthetase 2

TBARS:

Thiobarbituric acid reactive substances

TCA:

Trichloroacetic acid

TXNRD1:

Thioredoxin reductase 1

References

  • Almaida-Pagán PF, Lucas-Sánchez A, Tocher DR (2014) Changes in mitochondrial membrane composition and oxidative status during rapid growth, maturation and aging in zebrafish, Danio rerio. Biochim Biophys Acta 1841:1003–1011

    Article  PubMed  Google Scholar 

  • AOAC (1995) Official methods for analysis, 16th edn. AOAC International, Washington

    Google Scholar 

  • Arthur JR, Nicol F, Beckett GJ (1993) Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. Am J Clin Nutr Suppl 57:236S–239S

    CAS  Google Scholar 

  • Bates JM, Spate VL, Morris JS, St Germain DL, Galton VA (2000) Effects of selenium deficiency on tissue selenium content, deiodinase activity, and thyroid hormone economy in the rat development. Endocrinology 141:2490–2500

    CAS  PubMed  Google Scholar 

  • Behne D, Kyriakopoulos A (1993) Effects of dietary selenium on the tissue concentrations of type I iodothyronine 5′-deiodinase and other selenoproteins. Am J Clin Nutr Suppl 57:310S–312S

    CAS  Google Scholar 

  • Behne D, Hilmert H, Scheid S, Gessner H, Elger W (1988) Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta 966:12–21

    Article  CAS  PubMed  Google Scholar 

  • Benner MJ, Drew RE, Hardy RW, Robison BD (2010) Zebrafish (Danio rerio) vary by strain and sex in their behavioural and transcriptional responses to selenium supplementation. Comp Biochem Physiol 157A:310–318

    Article  CAS  Google Scholar 

  • Betancor MB, Atalah E, Caballero MJ, Benítez-Santana T, Roo J, Montero D, Izquierdo MS (2011) α-tocopherol in weaning diets for European sea bass (Dicentrarchus labrax) improves survival and reduces tissue damage caused by excess dietary DHA contents. Aquacult Nutr 17:e112–e122

    Article  Google Scholar 

  • Betancor MB, Caballero MJ, Terova G, Saleh R, Atalah E, Benítez-Santana T, Bell JG, Izquierdo MS (2012) Selenium inclusion decreases oxidative stress indicators and muscle injuries in sea bass larvae fed high DHA microdiets. Br J Nutr 108:2115–2128

    Article  CAS  PubMed  Google Scholar 

  • Burk RF, Hill KE (2009) Selenoprotein P-expression, functions and roles in mammals. Biochim Biophys Acta 1790:1441–1447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burk RF, Trumble MJ, Lawrence RA (1980) Rat hepatic cytosolic GSH-dependent enzyme protection against lipid peroxidation in the NADPH microsomal lipid peroxidation system. Biochim Biophys Acta 618:35–41

    Article  CAS  PubMed  Google Scholar 

  • Christie WW (2003) Lipid analysis, 3rd edn. Oily Press, Bridgwater

    Google Scholar 

  • Clarke SD (2001) Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr 131:1129–1132

    CAS  PubMed  Google Scholar 

  • Crosby AJ, Wahle KW, Duthie GG (1996) Modulation of glutathione peroxidase activity in human vascular endothelial cells by fatty acids and the cytokine interleukin-1 beta. Biochim Biophys Acta 1303:187–192

    Article  PubMed  Google Scholar 

  • Deniziak M, Thisse C, Rederstorff M, Hindelang C, Thisse B, Lescure A (2007) Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res 313:156–167

    Article  CAS  PubMed  Google Scholar 

  • Dumont E, Vanhaecke F, Cornelis R (2006) Selenium speciation from food source to metabolites: a critical review. Ann Bioanal Chem 385:1304–1323

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Guimarães MJ, Peterson D, Vicari A, Cocks BG, Copeland NG, Gilbert DJ, Jenkins NA, Ferrick DA, Kastelein RA, Bazan FJ, Zlotnik A (1996) Identification of a novel selD homolog from eukaryotes, bacteria and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? Proc Natl Acad Sci USA 93:15086–15091

    Article  PubMed Central  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hao X, Ling Q, Hong F (2014) Effects of dietary selenium on the pathological changes and oxidative stress in loach (Paramisgurnus dabryanus). Fish Physiol Biochem 40:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39:112–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hill KE, Jiadong Z, McMahan WJ, Motley AK, Atkins JF, Gesteland RF, Burk RF (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278:13640

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo MS, Scolamacchia MS, Betancor MB, Roo J, Caballero MJ, Terova G, Witten PE (2013) Effects of dietary DHA and α-tocopherol on bone development, early mineralisation and oxidative stress in Sparus aurata (Linnaeus, 1758) larvae. Br J Nutr 109:1796–1805

    Article  CAS  PubMed  Google Scholar 

  • Kjær M, Todorćevic M, Torstensen BE, Vegusdal A, Ruyter B (2008) Dietary n-3 HUFA affects mitochondrial fatty acid β-oxidation capacity and susceptibility to oxidative stress in Atlantic salmon. Lipids 43:813–827

    Article  PubMed  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    Article  CAS  PubMed  Google Scholar 

  • Mariotti M, Ridge PC, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One 7:e33066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to eight in fish) rule and the evolution of novel genes functions. Curr Opin Cell Biol 11:699–704

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Peak D, Cheng N, Hamilton C, Niyogi S (2012) Tissue-specific and speciation of selenium in rainbow trout (Oncorhynchus mykiss) exposed to elevated dietary selenomethionine. Comp Biochem Physiol 155B:560–565

    Google Scholar 

  • Muscat GE, Mynett-Johnson L, Doehan D, Downes M, Griggs R (1994) Activation of MyoD gene transcription by 3,5,3′-triodo-L-thyronine: a direct role for the thyroid hormone and retinoid X receptors. Nucleic Acid Res 22:583–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagaoka S, Okauchi Y, Urano S, Nagashima U, Mukai K (1990) Kinetic and ab initio study of the prooxidant effect of vitamin E: hydrogen abstraction from fatty acid esters and egg yolk lecithin. JACS 112:8921–8924

    Article  CAS  Google Scholar 

  • Olsen RE, Henderson RJ (1989) The rapid analysis of neutral and polar marine lipids using double development HPTLC and scanning densitometry. J Exp Mar Biol Ecol 129:189–197

    Article  CAS  Google Scholar 

  • Özkan-Yilmaz F, Özlüer-Hunt A, Gündüz S, Berköz M, Yalin S (2014) Effects of dietary selenium of organic form against lead toxicity on the antioxidant system in Cyprinus carpio. Fish Physiol Biochem 40:355–363

    Article  PubMed  Google Scholar 

  • Pacitti D, Wang T, Page M (2013) Characterization of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase genes in rainbow trout (Oncorhynchus mykiss) and their modulation by in vitro selenium exposure. Aquat Toxicol 130–131:97–111

    Article  PubMed  Google Scholar 

  • Papp LV, Lu J, Striebel F, Kennedy D, Holmgren A, Khanna KK (2006) The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol Cell Biol 26:4895–4910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pégorier JP, Le May C, Girard J (2004) Control of gene expression by fatty acids. J Nutr 134:2444S–2449S

    PubMed  Google Scholar 

  • Penglase S, Nordgreen A, van der Meeren T, Olsvik PA, Sæle Ø, Sweetman JW, Baeverfjord G, Helland S, Hamre K (2010) Increasing the levels of selenium in rotifers (Brachionus plicatilis “Cayman”) enhances the mRNA expression and activity of glutathione peroxidase in cod (Gadus morhua L.) larvae. Aquaculture 306:259–269

    Article  CAS  Google Scholar 

  • Penglase S, Hamre K, Ransinger JD, Ellingsen S (2014) Selenium status affects selenoprotein expression, reproduction, and F1 generation locomotor activity in zebrafish (Danio rerio). Br J Nutr 111:1918–1931

    Article  CAS  Google Scholar 

  • Pfaffl MW, Morgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Puangkaew J, Kiron V, Satoh S, Watanabe T (2005) Antioxidant defense of rainbow trout (Oncorhynchus mykiss) in relation to dietary n-3 HUFA highly unsaturated fatty acids and vitamin E contents. Comp Biochem Physiol 140C:187–196

    CAS  Google Scholar 

  • Rederstorff M, Krol A, Lescure A (2006) Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci 62:52–59

    Article  Google Scholar 

  • Saleh R, Betancor MB, Roo J, Montero D, Zamorano MJ, Izquierdo MS (2014) Selenium levels in early weaning diets for gilthead seabream larvae. Aquaculture 426–427:256–263

    Article  Google Scholar 

  • Schomburg L, Schweizer U (2009) Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophys Acta 1790:1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Schweizer U, Streckfuss F, Pelt P, Carlson BA, Hatfield DL, Köhrle J, Schomburg L (2005) Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem J 386:221–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Small-Howard A, Morozova N, Stoytcheva Z, Forry EP, Mansell JB, Harney JW, Carlson BA, Xu X, Hatfield DL, Berry MJ (2006) Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol Cell Biol 26:2337–2346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sneddon AA, Wu HC, Farquharson A, Grant I, Arthur JR, Rotondo D, Choe SN, Wahle KWJ (2003) Regulation of selenoprotein GPX4 expression and activity in human endothelial cells by fatty acids, cytokines and antioxidants. Atherosclerosis 171:57–65

    Article  CAS  PubMed  Google Scholar 

  • Stéphan G, Guillaume J, Lamour F (1995) Lipid peroxidation in turbot Scophtalmus maximus tissue: effect of dietary vitamin E and dietary n-6 or n-3 polyunsaturated fatty acids. Aquaculture 130:251–268

    Article  Google Scholar 

  • Stoytcheva ZR, Berry MJ (2009) Transcriptional regulation of mammalian selenoprotein expression. Biochim Biophys Acta 1790:1429–1440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunde RA, Raines AM (2011) Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr 2:138–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunde RA, Raines AM, Barnes KM, Evenson JK (2009) Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci Rep 29:329–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tinggi U (2008) Selenium: its role as antioxidant in human health. Environ Health Prev Med Mar 13:102–108

    Article  CAS  Google Scholar 

  • Tocher DR, Harvie DG (1988) Fatty acid compositions of the major phosphoglycerides from fish neural tissues; (n-3) and (n-6) polyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadus morhua) brains and retinas. Fish Physiol Biochem 5:229–239

    Article  CAS  PubMed  Google Scholar 

  • Todorćevic M, Kjær MA, Djakovic N, Vegusdal A, Torstensen BE, Ruyter B (2009) N-3 HUFAS affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue. Comp Biochem Physiol 152B:135–143

    Article  Google Scholar 

  • Ulloa PE, Iturra P, Neira R, Araneda C (2011) Zebrafish as a model organisms for nutrition and growth: towards comparative studies of nutritional genomics applied to aquaculture fishes. Rev Fish Biol Fisheries 21:649–666

    Article  Google Scholar 

  • Villeneuve L, Gisbert E, Le Delliou H, Cahu CL, Zambonino-Infante J (2006) Intake of high levels of vitamin A and polyunsaturated fatty acids during different developmental periods modifies the expression of morphogenesis genes in European sea bass (Dicentrarchus labrax). Br J Nutr 95:677–687

    Article  CAS  PubMed  Google Scholar 

  • Wahle KW, Rotondo D (1999) Fatty acid and endothelial cell function: regulation of adhesion molecule and redox enzyme expression. Curr Opin Clin Nutr Metab Care 2:109–115

    Article  CAS  PubMed  Google Scholar 

  • Witting LA, Horwitt MK (1964) Effect of degree of fatty acid unsaturation in tocopherol deficiency-induced creatinuria. J Nutr 82:19–33

    CAS  PubMed  Google Scholar 

  • Xu XM, Carlson BA, Irons R, Mix H, Zhong N, Gladyshev VN, Haltfield DL (2007) Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem J 404:115–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu BP (1994) Cellular defences against damage from reactive oxidative species. Physiol Rev 74:139–162

    CAS  PubMed  Google Scholar 

  • Zhang H, Mu Z, Xu LM, XU G, Liu M, Shan A (2009) Dietary lipid level induced antioxidant response in Manchurian trout, Brachymystax lenok (Pallas) larvae. Lipids 44:643–654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by a Marie Curie Intra-European Fellowship within the 7th Community Framework Programme (PIEF-GA-2011-297964, OLDMITO) awarded to P.F.A.-P.

Conflict of interest

The authors report no conflicts of interest.

Ethical standard

The authors confirm that there are no potential conflicts of interests. Fish were treated in accordance with British national ethical requirements and the experiments conducted under the UK Government Home Office Project licence number PPL 60/03969 in accordance with the amended Animals Scientific Procedures Act 1986 implementing EU directive 2010/63.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Betancor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betancor, M.B., Almaida-Pagán, P.F., Sprague, M. et al. Roles of selenoprotein antioxidant protection in zebrafish, Danio rerio, subjected to dietary oxidative stress. Fish Physiol Biochem 41, 705–720 (2015). https://doi.org/10.1007/s10695-015-0040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0040-2

Keywords

Navigation