Skip to main content
Log in

Assessment of the Burning Rate of Liquid Fuels in Confined and Mechanically-Ventilated Compartments using a Well-Stirred Reactor Approach

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

The objective of this work is to provide a ‘support tool’ to assess the burning rate of a pool fire in a well-confined and mechanically-ventilated room using a single-zone model based on conservation equations for mass, energy and oxygen concentration. Such configurations are particularly relevant for nuclear facilities where compartments are generally sealed from one another and connected through a ventilation network. The burning rates are substantially affected by the dynamic interaction between the fuel mass loss rate and the rate of air supplied by mechanical ventilation. The fuel mass loss rate is controlled by (i) the amount of oxygen available in the room (i.e. vitiation oxygen effect) and (ii) the thermal enhancement via radiative feedback from the hot gas to the fuel surface. The steady-state burning rate is determined by the ‘interplay’ and balance between the limiting effect of oxygen vitiation and the enhancing effect of radiative feedback. An extensive sensitivity study over a wide range of fuel areas and mechanical ventilation rates shows that a maximum burning rate may be obtained. For the studied HTP (Hydrogenated Tetra-Propylene) pool fires, the maximum burning rate is up to 1.75 times the burning rate in open air conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Abbreviations

A :

Area (m2)

c p :

Specific heat (kJ/kg K)

F :

Configuration factor (−)

H :

Height (m)

h c :

Convective heat transfer coefficient (kW/m2 K)

h k :

Conduction heat transfer coefficient (kW/m K)

k :

Conductivity (kW/m K)

L v :

Heat of vaporization of the fuel (kJ/kg)

\( \dot{m} \) :

Mass flow rate (kg/s)

P :

Room pressure (Pa)

\( \dot{Q}_{f} \) :

Heat release rate of fire (kW)

\( \dot{q}^{''}_{R} \) :

Radiative heat flux (kW/m2)

T :

Temperature (K)

TR :

Renewal rate (h−1)

t :

Time (s)

V :

Room volume (m3)

\( \dot{V} \) :

Volume flow rate (m3/s)

\( Y_{{O_{2} }} \) :

Oxygen mass fraction (kg/kg)

ΔH c :

Heat of combustion of fuel (kW/kg)

\( \Delta H_{{{\text{O}}_{2} }} \) :

Heat of combustion per unit mass of oxygen (kW/kg)

Δp :

Pressure difference (Pa)

Δpmax :

Stall pressure of the fan (Pa)

γ :

Isentropic coefficient of gas (−)

ε :

Gas emissivity (-)

ρ :

Gas density (kg/m3)

σ :

Stephan–Boltzmann constant (= 5.67 × 10−11 kW/m2 K4)

χ :

Combustion efficiency (−)

″:

Rate per unit area

a :

Ambient conditions

b :

Burning

ex :

Extraction

F :

Fuel

in :

Inlet

op :

Opening

open :

Open conditions

v :

Vaporization

w :

Walls (+ceiling and floor)

0:

Initial condition

∞:

Limiting rate

References

  1. Bullen ML, Thomas PH (1979) Compartment fires with non-cellulosic fuels. Proc Combust Inst 17:1139–1148. doi:10.1016/S0082-0784(79)80108-3

    Article  Google Scholar 

  2. Takeda H, Akita K (1981) Critical Phenomenon in Compartment Fires With Liquid Fuels. Proc Combust Inst 18:519–527. doi:10.1016/S0082-0784(81)80057-4

    Article  Google Scholar 

  3. Bishop SR, Holborn PG, Beard AN, Drysdale DD (1993) Nonlinear dynamics of flashover in compartment fires. Fire Saf J 21:11–45. doi: 10.1016/0379-7112(93)90003-9

    Article  MATH  Google Scholar 

  4. Holborn PG, Bishop SR, Drysdale DD, Beard AN (1993) Experimental and theoretical models of flashover. Fire Saf J 21:257–266. doi: 10.1016/0379-7112(93)90030-T

    Article  MATH  Google Scholar 

  5. Peatross MJ, Beyler CL (1997) Ventilation effects on compartment fire characterization. Fire Saf Sci. doi:10.3801/IAFSS.FSS.5-403

    Google Scholar 

  6. Delichatsios MA, Silcock GWH (2003) Fully involved enclosure fires: effects of fuel type, fuel area and geometry. Fire Saf Sci. doi:10.3801/IAFSS.FSS.7-59

    Google Scholar 

  7. Utiskul Y, Quintiere JG, Rangwala AS, Ringwelski BA, Wakatsuki K, Naruse T (2005) Compartment fire phenomena under limited ventilation. Fire Saf J 40:367–390. doi: 10.1016/j.firesaf.2005.02.002

    Article  Google Scholar 

  8. Kawagoe K (1958) Fire behaviour in rooms. Report No. 27. Building Research Institute, Tokyo

  9. Thomas PH, Heselden AJM, Law M (1967). Fully developed compartment fires: two kinds of behaviour. Fire Research Technical Paper No. 18. HMSO, London

  10. Nishio G, Machida S, (1987) Pool fires under atmosphere and ventilation in steady-state burning, Part II. Fire Technol 23:186–197. doi: 10.1007/BF01036935

    Article  Google Scholar 

  11. McCaffrey BJ, Quintiere JG, Harkleroad MF (1981) Estimating room temperatures and the likelihood of flashover using fire test data correlations. Fire Technol 17:98–119. doi: 10.1007/BF02479583

    Article  Google Scholar 

  12. Foote KL, Pagni PJ, Alvares NJ (1985) Temperature correlations for forced-ventilated compartment fires. Fire Saf Sci. doi: 10.3801/IAFSS.FSS.1-139

    Google Scholar 

  13. Prétrel H, Querre P, Forestier M (2005) Experimental study of burning rate behaviour in confined and ventilated fire compartments. Fire Saf Sci. doi: 10.3801/IAFSS.FSS.8-1217

    Google Scholar 

  14. Melis S, Audouin L (2008) Effects of vitiation on the heat release Rate in mechanically-ventilated compartment fires. Fire Saf Sci. doi: 10.3801/IAFSS.FSS.9-931

    Google Scholar 

  15. Audouin L et al. (2011) Quantifying differences between computational results and measurements in the case of a large-scale well-confined fire scenario. Nucl Eng Des 241:18–31. doi: 10.1016/j.nucengdes.2010.10.027

    Article  Google Scholar 

  16. Bonte F, Noterman N, Merci B (2013) Computer simulations to study interaction between burning rates and pressure variations in confined enclosure fires. Fire Saf J 26:125–143. doi: 10.1016/j.firesaf.2013.01.030

    Article  Google Scholar 

  17. Pelzer M, Klein-Heβling W (2013) Validation of COCOSYS pyrolysis models on OECD PRISME fire experiments. Fire Saf J 62:174–191. doi: 10.1016/j.firesaf.2013.01.016

    Article  Google Scholar 

  18. Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, West Sussex, England

    Book  Google Scholar 

  19. Stern-Gottfried J, Rein G, Bisby LA, Torero JL (2010) Experimental review of the homogeneous temperature assumption in post-flashover compartment fires. Fire Saf J 45:249–261. doi: 10.1016/j.firesaf.2010.03.007

    Article  Google Scholar 

  20. Santo G., Tamanini F (1981) Influence of oxygen concentration on the radiative properties of PMMA. Proc Combust Inst 18:619–631. doi: 10.1016/S0082-0784(81)80067-7

    Article  Google Scholar 

  21. Babrauskas V (1983) Estimating large pool fire burning rates. Fire Technol 19:251–261

    Article  Google Scholar 

Download references

Acknowledgments

The research activities as described in this paper were funded by Bel V through a post-doctoral research grant (Contract Number A12/TT/0617).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Beji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beji, T., Merci, B. Assessment of the Burning Rate of Liquid Fuels in Confined and Mechanically-Ventilated Compartments using a Well-Stirred Reactor Approach. Fire Technol 52, 469–488 (2016). https://doi.org/10.1007/s10694-014-0418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-014-0418-1

Keywords

Navigation