Skip to main content
Log in

The 2009 Smouldering Peat Fire in Las Tablas de Daimiel National Park (Spain)

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Las Tablas de Daimiel National Park (TDNP), recognized as both Biosphere reserve by UNESCO and Ramsar site, is one of the last representatives in the Iberian Peninsula of Mediterranean wetlands linked to groundwater dynamics. It constitutes an outstanding flora and fauna reserve. The inappropriate agricultural management of the groundwater resources that support the system has caused the drying up of the wetland from 2004 to 2009. As a consequence, a smouldering peat fire started inside the TDNP in August 2009. This fire poses an enormous risk for both the physical structure supporting the ecosystem and the quality of groundwater beneath it. The situation got worse in September when a surface fire in the eastern limit of the Park, 3.5 km away from the first underground seat, transmitted to the subsoil giving rise to a second smouldering peat fire outside the Park. The analysis of key parameters monitored in several locations of the TDNP at different depths, such as soil moisture, temperature and organic matter content, shows there was enough previous evidence to foresee the peat self-combustion and the risk that any surface fire could be transmitted to the subsoil. The relatively small size of the Park, the knowledge of the spatial distribution of peat masses, together with the detailed knowledge about soil and vadose zone structure, have allowed to design and execute an emergency plan to hold the fire back. The experience has allowed to check for strong and weak points in the vigilance and alert system implemented, to confirm the effectiveness of the measures applied for the fire control and to propose short and long term actions for preventing fires from starting in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mitsch WJ and Gosselink JG (1993) Wetlands. Van Nostrand Reinhold, New York, p 722

    Google Scholar 

  2. Phillips JD (1989) Fluvial sediment storage in wetlands. Water Resources Bulletin. 25:867-873

    Google Scholar 

  3. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P and Van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature, 387:253-260

    Article  Google Scholar 

  4. Joosten H, Clark D (2002) Wise use of mires and peatlands. Background and Principles Including a Framework for Decision Making. International Mire Conservation Group and International Peat Society (Ed), Saarijärvi, Finland

    Google Scholar 

  5. Parish F, Sirin A, Charman D, Joosten H, Minaeva T, Silvius M (eds) (2008) Assessment on peatlands, biodiversity and climate change. Global Environment Centre, Kuala Lumpur & Weatlands International, Wageningen

    Google Scholar 

  6. Rein G, Cleaver N, Ashton C, Pironi P, Torero JL (2008) The severity of smouldering peat fires and damage to the forest soil. Catena 74:304–309

    Article  Google Scholar 

  7. Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    Article  Google Scholar 

  8. Stracher GB, Taylor TP (2004) Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int J Coal Geol 59:7–17

    Article  Google Scholar 

  9. Rein G, (2009) Smouldering Combustion Phenomena in Science and Technology. International Review of Chemical Engineering, 1: 3-18

    Google Scholar 

  10. Frandsen WH (1987) The influence of moisture and mineral soil on the combustion limits of smoldering forest duff. Can. J. For. Res. 17:1540-1544

    Article  Google Scholar 

  11. Moreno L, Castaño S, Jiménez ME, Aguilera H, De la Losa A (2007) Control del efecto de la inversión del flujo vertical (descarga a recarga) sobre la composición química del agua subterránea en el Parque Nacional de Las Tablas de Daimiel. Resúmenes del I Congreso Nacional sobre Cambio Global, Getafe, p 30

  12. DeBano LF (1981) Water repellent soils: a state-of-the-art. United States Department of Agriculture, Forest Service, General Technical Report PSW-46. Berkeley, California, p 21

  13. Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews 51:33–65

    Article  Google Scholar 

  14. Tucker KA, Karnok KJ, Radcliffe DE, Landry GJr, Roncadori RW and Tan KH (1990) Localized dry spots as caused by hydrophobic sands on bentgrass greens. Agronomy Journal, 82:549-555

    Article  Google Scholar 

  15. Ritsema CJ and Dekker LW (1996) Water repellency and its role in forming preferred flow paths in soils. Australian Journal of Soil Research, 34:475-487

    Article  Google Scholar 

  16. Fox DM, Darboux F and Carrega P (2007) Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrol. Process. 21:2377–2384

    Article  Google Scholar 

  17. Domínguez-Castro F, Santisteban JI, Mediavilla R, Dean WE, López-Pamo E, Gil-García MJ and Ruiz-Zapata MB (2006) Environmental and geochemical record of human-induced changes in C storage during the last millennium in a temperate wetland (Las Tablas de Daimiel National Park, central Spain). Tellus. 58:573-585

    Article  Google Scholar 

  18. Sánchez-Carrillo S, Angeler DG, Sánchez-Andrés R, Álvarez-Cobelas M and Garatuza Payán J (2004) Evapotranspiration in semi-arid wetlands: relationships between inundation and the macrophyte cover:open-water ratio. Advances in Water Resources. 27:643-655

    Article  Google Scholar 

  19. Aguilera H, Moreno L, Jiménez ME, De la Losa A, Castaño S (2009) Propiedades físicas e hidráulicas de la ZNS en el Parque Nacional de las Tablas de Daimiel. In: Silva O et al (eds) Estudios en la Zona no Saturada del Suelo, vol IX. Barcelona. http://congress.cimne.com/zns09/frontal/papers.asp

  20. Holden J, Burt TP (2002) Piping and pipeflow in a deep peat catchment. Catena 48 163–199

    Article  Google Scholar 

  21. García M (1996) Hidrogeología de las Tablas de Daimiel y de los Ojos del Guadiana. Bases hidrogeológicas para una clasificación funcional de humedales ribereños. Ph Thesis, Universidad Complutense de Madrid. Madrid. http://eprints.ucm.es/3104/

  22. Cirujano S (1996) Bentos vegetal, flora y vegetación superior. In: Alvarez-Cobelas M & Cirujano S (ed) Las Tablas de Daimiel. Ecología acuática y sociedad. Organismo Autónomo Parques Nacionales. Ministerio Español de Medio Ambiente, Madrid, 129-139

    Google Scholar 

  23. Van Reeuwijk LP (ed) (2002) Procedures for soil analysis, 6th edn. Tech. Pap. 9, ISRIC, Wageningen

  24. Bisdom EBA, Dekker LW, Schoute JFT (1993) Water repellency of size fractions from sandy soils and relationships with organic material and soil structure. Geoderma 56:105–118

    Article  Google Scholar 

  25. Aguilera H, Moreno L, Castaño S, Jiménez ME, De la Losa A (2009) Contenido y distribución espacial de nutrientes móviles en la zona no saturada en el Parque Nacional de las Tablas de Daimiel (Nutrient content and its spatial distribution in the unsaturated zone at the Las Tabla de Daimiel National Park). Boletín Geológico y Minero de España 120(3):393–408. http://www.igme.es/internet/default.asp

  26. Garcia MGJ, Zapata MBR, Santisteban JI, Mediavilla R, Lopez-Pamo E, Dabrio CJ (2007) Late holocene environments in Las Tablas de Daimiel (south central Iberian peninsula, Spain). Veg Hist Archaeobot 16(4):241–250

    Article  Google Scholar 

  27. Frandsen WH (1997) Ignition probability of organic soils. Can. J. For. Res. 27(9):1471-1477

    Article  Google Scholar 

Download references

Acknowledgements

The presented data have been obtained thanks to the Spanish Ministry of Science and Innovation financing through the CICYT project CGL2005-06458-C02-01. Analytical determinations have been carried out at the Edaphology Department of the Complutense University of Madrid. Special thanks must be given to Las Tablas de Daimiel National Park Direction for all the facilities and support for access and sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, L., Jiménez, ME., Aguilera, H. et al. The 2009 Smouldering Peat Fire in Las Tablas de Daimiel National Park (Spain). Fire Technol 47, 519–538 (2011). https://doi.org/10.1007/s10694-010-0172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-010-0172-y

Keywords

Navigation