Skip to main content
Log in

Credit Derivative Evaluation and CVA Under the Benchmark Approach

  • Published:
Asia-Pacific Financial Markets Aims and scope Submit manuscript

Abstract

In this paper, we discuss how to model credit risk under the benchmark approach. Firstly we introduce an affine credit risk model. We then show how to price credit default swaps (CDSs) and introduce credit valuation adjustment (CVA) as an extension of CDSs. In particular, our model can capture right-way—and wrong-way exposure. This means, we capture the dependence structure of the default event and the value of the transaction under consideration. For simple contracts, we provide closed-form solutions. However, due to the fact that we allow for a dependence between the default event and the value of the transaction, closed-form solutions are difficult to obtain in general. Hence we conclude this paper with a reduced form model, which is more tractable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baldeaux, J., & Platen, E. (2013). Functionals of multidimensional diffusions with applications to finance. Bocconi & Springer Series.

  • Bielecki, T., Brigo, D., & Patras, F. (2011). Credit risk frontiers: Subprime crisis, pricing and hedging, CVA, MBS, ratings, and liquidity. New York: Wiley.

    Book  Google Scholar 

  • Brigo, D., & Chourdakis, K. (2009). Counterparty risk for credit default swaps: Impact of spread volatility and default correlation. International Journal of Theoretical and Applied Finance, 12(7), 1007–1026.

    Article  Google Scholar 

  • Burgard, C. Z., & Kjaer, M. (2011). Funding cost adjustment for derivatives. Asia Risk, 2011, 63–67.

    Google Scholar 

  • Cesari, G., Aquilina, J., Charpillon, N., Filipović, Z., Lee, G., & Manda, I. (2009). Modelling, pricing, and hedging counterparty credit exposure. Berlin: Springer.

    Book  Google Scholar 

  • Crépey, S. (2011). A BSDE approach to counterparty risk under funding constraints. University de Evry (working paper).

  • Du, K., & Platen, E. (2012a). Benchmarked risk minimization. University of Technology, Sydney (working paper).

  • Du, K., & Platen, E. (2012b). Forward and futures contracts on commodities under the benchmark approach. University of Technology, Sydney (working paper).

  • Filipović, D. (2009). Term-structure models. Berlin: Springer Finance.

    Book  Google Scholar 

  • Kelly, J. R. (1956). A new interpretation of information rate. Bell Systems Technology Journal, 35, 917–926.

    Article  Google Scholar 

  • Lennox, K. (2011). Lie symmetry methods for multi-dimensional linear parabolic PDEs and diffusions. Ph. D. thesis, UTS, Sydney.

  • Long, J. B. (1990). The numeraire portfolio. Journal on Financial Economics, 26(1), 29–69.

    Article  Google Scholar 

  • Musiela, M., & Rutkowski, M. (2005). Martingale methods in financial modelling (2nd ed.)., Volume 36 of Applied Mathematics Berlin: Springer.

    Google Scholar 

  • Pallavicini, A., Perini, D., & Brigo, D. (2011). Funding valuation adjustment: A consistent framework including CVA, DVA, collateral, netting rules and re-hypothecation. Imperial College, London (working paper).

  • Platen, E. (2002). A benchmark framework for integrated risk management. Technical report, University of Technology, Sydney. QFRG Research Paper 82.

  • Platen, E., & Bruti-Liberati, N. (2010). Numerical solution of SDEs with jumps in finance. Berlin: Springer.

    Google Scholar 

  • Platen, E., & Heath, D. (2010). A benchmark approach to quantitative finance. Berlin: Springer Finance.

    Google Scholar 

  • Platen, E., & Rendek, R. (2012). Approximating the numeraire portfolio by naive diversification. Journal of Asset Management, 13(1), 34–50.

    Article  Google Scholar 

  • Tang, D., Wang, Y., & Zhou, Y. (2011). Counterparty risk for credit default swaps with states related default intensity processes. International Journal of Theoretical and Applied Finance, 14(8), 1335–1353.

    Article  Google Scholar 

  • Wu, L. (2012). CVA and FVA under margining. Hong Kong University of Science and Technology (working paper).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Baldeaux.

Appendix: Laplace Transforms for Square-Root Processes

Appendix: Laplace Transforms for Square-Root Processes

The following results are based on Lennox (2011) and are contained in Baldeaux and Platen (2013) as Propositions 7.3.8 and 7.3.9. Consider a square-root process \(X = \left\{ X_t, \, t \ge 0 \right\} \), where

$$\begin{aligned} d X_t = (a - b X_t ) dt + \sqrt{2 \sigma X_t} d W_t \end{aligned}$$
(34)

with \(X_0=x >0\).

Proposition 7.1

Assume that \(X = \left\{ X_t, \, t \ge 0 \right\} \) is given by (34) and that \(\frac{2 a }{\sigma } \ge 2\). Let \(\beta = 1 + m - \alpha + \frac{\nu }{2}\), \(m=\frac{1}{2} \left( \frac{a}{\sigma } - 1 \right) \), and \(\nu = \frac{1}{\sigma } \sqrt{(a - \sigma )^2 + 4 \mu \sigma }\). Then if \(m > \alpha - \frac{\nu }{2} -1\),

$$\begin{aligned}&E \left( \exp \left\{ - \mu \int ^t_0 \frac{ds}{X_s} \right\} X^{- \alpha }_t \right) \\&\quad = \frac{1}{2^{\nu } x^m} \exp \left\{ - \frac{b x}{\sigma \left( e^{bt} -1 \right) } + b m t \right\} \left( \frac{b \exp \{ b t \} }{( e^{b t} -1 )\sigma } \right) ^{-m + \alpha - \frac{\nu }{2}}\\&\qquad \times \, \left( \frac{b^2 x}{\sigma ^2 \sinh ^2 (\frac{bt}{2})} \right) ^{\nu /2} \frac{\Gamma (\beta )}{\Gamma (1+ \nu )} _1 F_1 \left( \beta , 1 + \nu , \frac{bx}{\sigma \left( e^{b t} -1 \right) } \right) . \end{aligned}$$

where \({}_1{}F_1\) denotes the confluent hypergeometric function. Finally, we present Proposition 2.0.42 from Lennox (2011).

Proposition 7.2

Assume that \(X = \left\{ X_t, \, t \ge 0 \right\} \) is given by Eq. (34) and that \(\frac{2 a }{\sigma } \ge 2\). Define \(A=b^2+4 \mu \sigma \), \(m=\frac{1}{\sigma } \sqrt{(a- \sigma )^2 + 4 \sigma \nu } \), \(\beta = \frac{\sqrt{A x}}{\sigma \sinh ( \frac{\sqrt{A} t}{2} )}\), and \(k = \frac{\sqrt{A} + b \tanh ( \frac{\sqrt{A} t}{2} )}{2 \sigma \tanh (\frac{\sqrt{A} t}{2})}\). Then if \( a > ( 2 \alpha -3 ) \sigma \), for \(\mu >0\), \(\nu \ge 0\),

$$\begin{aligned}&E \left( X^{- \alpha }_t \exp \left\{ - \nu \int ^t_0 \frac{ds}{X_s} - \mu \int ^t_0 X_s ds \right\} \right) \\&\quad = \frac{ \sqrt{A} x^{\frac{1}{2} - \frac{a}{2 \sigma }} }{2 \sigma \sinh ( \frac{\sqrt{A} t}{2} ) } \left( \frac{\beta }{2} \right) ^m \exp \left\{ \frac{ b (x + at) - \sqrt{A} x \coth ( \frac{\sqrt{A} t}{2} ) }{2 \sigma } \right\} k^{- (1 + \frac{a}{2 \sigma } + \frac{1}{2} + \frac{m}{2} - \alpha )}\\&\qquad \times \, \frac{\Gamma ( 1 + \frac{a}{2 \sigma } + \frac{1}{2} + \frac{m}{2} - \alpha )}{\Gamma (1+m)} _1 F_1 \left( 1 - \alpha + \frac{a}{2 \sigma } + \frac{1}{2} + \frac{m}{2}, 1+ m, \frac{\beta ^2}{4k} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldeaux, J., Platen, E. Credit Derivative Evaluation and CVA Under the Benchmark Approach. Asia-Pac Financ Markets 22, 305–331 (2015). https://doi.org/10.1007/s10690-015-9204-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10690-015-9204-4

Keywords

Mathematics Subject Classification

JEL Classification 

Navigation