Skip to main content
Log in

Loss of MSH2 and MSH6 due to heterozygous germline defects in MSH3 and MSH6

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Lynch Syndrome (LS) is the most common dominantly inherited colorectal cancer (CRC) predisposition and is caused by a heterozygous germline defect in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2. High microsatellite instability (MSI-H) and loss of MMR protein expression in tumours reflecting a defective MMR are indicators for LS, as well as a positive family history of early onset CRC. MSH2 and MSH6 form a major functional heterodimer, and MSH3 is an alternative binding partner for MSH2. So far, the role of germline MSH3 variants remains unclear, as to our knowledge heterozygous truncating variants are not regarded causative for LS, but were detected in patients with CRC, and recently biallelic MSH3 defects have been identified in two patients with adenomatous polyposis. By gene screening we investigated the role of MSH3 in 11 LS patients with truncating MSH6 germline variants and an unexplained MSH2 protein loss in their corresponding MSI-H tumours. We report the first two LS patients harbouring heterozygous germline variants c.1035del and c.2732T>G in MSH3 coincidentally with truncating variants in MSH6. In the patient with truncating germline variants in MSH3 and MSH6, two additional somatic second hits in both genes abrogate all binding partners for the MSH2 protein which might subsequently be degraded. The clinical relevance of MSH3 germline variants is currently under re-evaluation, and heterozygous MSH3 defects alone do not seem to induce a LS phenotype, but might aggravate the MSH6 phenotype in affected family members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

IHC:

Immunohistochemical

LOH:

Loss of heterozygosity

LS:

Lynch Syndrome

MMR:

DNA mismatch repair

MSI-H:

High microsatellite instability

References

  1. Lynch HT, de la Chapelle A (1999) Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 36(11):801–818

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chang DK, Ricciardiello L, Goel A, Chang CL, Boland CR (2000) Steady-state regulation of the human DNA mismatch repair system. J Biol Chem 275(24):18424–18431. doi:10.1074/jbc.M001140200

    Article  CAS  PubMed  Google Scholar 

  3. Acharya S, Wilson T, Gradia S, Kane MF, Guerrette S, Marsischky GT, Kolodner R, Fishel R (1996) hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci USA 93(24):13629–13634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Genschel J, Littman SJ, Drummond JT, Modrich P (1998) Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem 273(31):19895–19901

    Article  CAS  PubMed  Google Scholar 

  5. Jiricny J, Marra G (2003) DNA repair defects in colon cancer. Curr Opin Genet Dev 13(1):61–69

    Article  CAS  PubMed  Google Scholar 

  6. Marra G, Jiricny J (2005) DNA mismatch repair and colon cancer. Adv Exp Med Biol 570:85–123. doi:10.1007/1-4020-3764-3_4

    Article  CAS  PubMed  Google Scholar 

  7. Kolodner RD, Marsischky GT (1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9(1):89–96

    Article  CAS  PubMed  Google Scholar 

  8. Plaschke J, Engel C, Kruger S, Holinski-Feder E, Pagenstecher C, Mangold E, Moeslein G, Schulmann K, Gebert J, von Knebel Doeberitz M, Ruschoff J, Loeffler M, Schackert HK (2004) Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations: the German Hereditary Nonpolyposis Colorectal Cancer Consortium. J Clin Oncol 22(22):4486–4494. doi:10.1200/JCO.2004.02.033

    Article  CAS  PubMed  Google Scholar 

  9. Schiemann U, Muller-Koch Y, Gross M, Daum J, Lohse P, Baretton G, Muders M, Mussack T, Kopp R, Holinski-Feder E (2004) Extended microsatellite analysis in microsatellite stable, MSH2 and MLH1 mutation-negative HNPCC patients: genetic reclassification and correlation with clinical features. Digestion 69(3):166–176. doi:10.1159/000078223

    Article  CAS  PubMed  Google Scholar 

  10. Kantelinen J, Kansikas M, Korhonen MK, Ollila S, Heinimann K, Kariola R, Nystrom M (2010) MutSbeta exceeds MutSalpha in dinucleotide loop repair. Br J Cancer 102(6):1068–1073. doi:10.1038/sj.bjc.6605531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tome S, Manley K, Simard JP, Clark GW, Slean MM, Swami M, Shelbourne PF, Tillier ER, Monckton DG, Messer A, Pearson CE (2013) MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington’s disease mice. PLoS Genet 9(2):e1003280. doi:10.1371/journal.pgen.1003280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams GM, Surtees JA (2015) MSH3 promotes dynamic behavior of trinucleotide repeat tracts in vivo. Genetics 200(3):737–754. doi:10.1534/genetics.115.177303

    Article  PubMed  PubMed Central  Google Scholar 

  13. Campregher C, Schmid G, Ferk F, Knasmuller S, Khare V, Kortum B, Dammann K, Lang M, Scharl T, Spittler A, Roig AI, Shay JW, Gerner C, Gasche C (2012) MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells. PLoS ONE 7(11):e50541. doi:10.1371/journal.pone.0050541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carethers JM, Koi M, Tseng-Rogenski SS (2015) EMAST is a form of microsatellite instability that is initiated by inflammation and modulates colorectal cancer progression. Genes 6(2):185–205. doi:10.3390/genes6020185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haugen AC, Goel A, Yamada K, Marra G, Nguyen TP, Nagasaka T, Kanazawa S, Koike J, Kikuchi Y, Zhong X, Arita M, Shibuya K, Oshimura M, Hemmi H, Boland CR, Koi M (2008) Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer. Cancer Res 68(20):8465–8472. doi:10.1158/0008-5472.CAN-08-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu HX, Zhou XL, Liu T, Werelius B, Lindmark G, Dahl N, Lindblom A (2003) The role of hMLH3 in familial colorectal cancer. Cancer Res 63(8):1894–1899

    CAS  PubMed  Google Scholar 

  17. Wu Y, Berends MJ, Sijmons RH, Mensink RG, Verlind E, Kooi KA, van der Sluis T, Kempinga C, van dDer Zee AG, Hollema H, Buys CH, Kleibeuker JH, Hofstra RM (2001) A role for MLH3 in hereditary nonpolyposis colorectal cancer. Nat Genet 29(2):137–138. doi:10.1038/ng1001-137

    Article  CAS  PubMed  Google Scholar 

  18. Nicolaides NC, Papadopoulos N, Liu B, Wei YF, Carter KC, Ruben SM, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371(6492):75–80. doi:10.1038/371075a0

    Article  CAS  PubMed  Google Scholar 

  19. Huang J, Kuismanen SA, Liu T, Chadwick RB, Johnson CK, Stevens MW, Richards SK, Meek JE, Gao X, Wright FA, Mecklin JP, Jarvinen HJ, Gronberg H, Bisgaard ML, Lindblom A, Peltomaki P (2001) MSH6 and MSH3 are rarely involved in genetic predisposition to nonpolypotic colon cancer. Cancer Res 61(4):1619–1623

    CAS  PubMed  Google Scholar 

  20. Rohlin A, Rambech E, Kvist A, Torngren T, Eiengard F, Lundstam U, Zagoras T, Gebre-Medhin S, Borg A, Bjork J, Nilbert M, Nordling M (2016) Expanding the genotype-phenotype spectrum in hereditary colorectal cancer by gene panel testing. Fam Cancer. doi:10.1007/s10689-016-9934-0

    PubMed Central  Google Scholar 

  21. Yang X, Wu J, Lu J, Liu G, Di G, Chen C, Hou Y, Sun M, Yang W, Xu X, Zhao Y, Hu X, Li D, Cao Z, Zhou X, Huang X, Liu Z, Chen H, Gu Y, Chi Y, Yan X, Han Q, Shen Z, Shao Z, Hu Z (2015) Identification of a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population by next-generation sequencing. PLoS ONE 10(4):e0125571. doi:10.1371/journal.pone.0125571

    Article  PubMed  PubMed Central  Google Scholar 

  22. Berndt SI, Platz EA, Fallin MD, Thuita LW, Hoffman SC, Helzlsouer KJ (2007) Mismatch repair polymorphisms and the risk of colorectal cancer. Int J Cancer 120(7):1548–1554. doi:10.1002/ijc.22510

    Article  CAS  PubMed  Google Scholar 

  23. Duraturo F, Liccardo R, Cavallo A, De Rosa M, Grosso M, Izzo P (2011) Association of low-risk MSH3 and MSH2 variant alleles with Lynch syndrome: probability of synergistic effects. Int J Cancer 129(7):1643–1650. doi:10.1002/ijc.25824

    Article  CAS  PubMed  Google Scholar 

  24. Kraus C, Rau TT, Lux P, Erlenbach-Wunsch K, Lohr S, Krumbiegel M, Thiel CT, Stohr R, Agaimy A, Croner RS, Sturzl M, Hohenberger W, Hartmann A, Reis A (2015) Comprehensive screening for mutations associated with colorectal cancer in unselected cases reveals penetrant and nonpenetrant mutations. Int J Cancer 136(6):E559–E568. doi:10.1002/ijc.29149

    Article  CAS  PubMed  Google Scholar 

  25. Ohmiya N, Matsumoto S, Yamamoto H, Baranovskaya S, Malkhosyan SR, Perucho M (2001) Germline and somatic mutations in hMSH6 and hMSH3 in gastrointestinal cancers of the microsatellite mutator phenotype. Gene 272(1–2):301–313

    Article  CAS  PubMed  Google Scholar 

  26. Reeves SG, Meldrum C, Groombridge C, Spigelman A, Suchy J, Kurzawski G, Lubinski J, Scott RJ (2012) DNA repair gene polymorphisms and risk of early onset colorectal cancer in Lynch syndrome. Cancer Epidemiol 36(2):183–189. doi:10.1016/j.canep.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  27. Edelmann W, Umar A, Yang K, Heyer J, Kucherlapati M, Lia M, Kneitz B, Avdievich E, Fan K, Wong E, Crouse G, Kunkel T, Lipkin M, Kolodner RD, Kucherlapati R (2000) The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res 60(4):803–807

    CAS  PubMed  Google Scholar 

  28. van Oers JM, Edwards Y, Chahwan R, Zhang W, Smith C, Pechuan X, Schaetzlein S, Jin B, Wang Y, Bergman A, Scharff MD, Edelmann W (2014) The MutSbeta complex is a modulator of p53-driven tumorigenesis through its functions in both DNA double-strand break repair and mismatch repair. Oncogene 33(30):3939–3946. doi:10.1038/onc.2013.365

    Article  PubMed  Google Scholar 

  29. Hinz JM, Meuth M (1999) MSH3 deficiency is not sufficient for a mutator phenotype in Chinese hamster ovary cells. Carcinogenesis 20(2):215–220

    Article  CAS  PubMed  Google Scholar 

  30. de Wind N, Dekker M, Claij N, Jansen L, van Klink Y, Radman M, Riggins G, van der Valk M, van’t Wout K, te Riele H (1999) HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 23(3):359–362. doi:10.1038/15544

    Article  PubMed  Google Scholar 

  31. Plaschke J, Kruger S, Jeske B, Theissig F, Kreuz FR, Pistorius S, Saeger HD, Iaccarino I, Marra G, Schackert HK (2004) Loss of MSH3 protein expression is frequent in MLH1-deficient colorectal cancer and is associated with disease progression. Cancer Res 64(3):864–870

    Article  CAS  PubMed  Google Scholar 

  32. Plaschke J, Preussler M, Ziegler A, Schackert HK (2012) Aberrant protein expression and frequent allelic loss of MSH3 in colorectal cancer with low-level microsatellite instability. Int J Colorectal Dis 27(7):911–919. doi:10.1007/s00384-011-1408-0

    Article  PubMed  Google Scholar 

  33. Akiyama Y, Tsubouchi N, Yuasa Y (1997) Frequent somatic mutations of hMSH3 with reference to microsatellite instability in hereditary nonpolyposis colorectal cancers. Biochem Biophys Res Commun 236(2):248–252. doi:10.1006/bbrc.1997.6942

    Article  CAS  PubMed  Google Scholar 

  34. Yin J, Kong D, Wang S, Zou TT, Souza RF, Smolinski KN, Lynch PM, Hamilton SR, Sugimura H, Powell SM, Young J, Abraham JM, Meltzer SJ (1997) Mutation of hMSH3 and hMSH6 mismatch repair genes in genetically unstable human colorectal and gastric carcinomas. Hum Mutat 10(6):474–478. doi:10.1002/(SICI)1098-1004(1997)10:6<474::AID-HUMU9>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  35. Adam R, Spier I, Zhao B, Kloth M, Marquez J, Hinrichsen I, Kirfel J, Tafazzoli A, Horpaopan S, Uhlhaas S, Stienen D, Friedrichs N, Altmuller J, Laner A, Holzapfel S, Peters S, Kayser K, Thiele H, Holinski-Feder E, Marra G, Kristiansen G, Nothen MM, Buttner R, Moslein G, Betz RC, Brieger A, Lifton RP, Aretz S (2016) Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. Am J Hum Genet 99(2):337–351. doi:10.1016/j.ajhg.2016.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gong P, Charles S, Rosenblum N, Wang Z, Witkiewicz AK (2012) A case of endometrial cancer in the context of a BRCA2 mutation and double heterozygosity for Lynch syndrome. Gynecol Oncol Case Rep 2(3):69–72. doi:10.1016/j.gynor.2012.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  37. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hiatt RA, Jass J, Lindblom A, Lynch HT, Peltomaki P, Ramsey SD, Rodriguez-Bigas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morak M, Koehler U, Schackert HK, Steinke V, Royer-Pokora B, Schulmann K, Kloor M, Hochter W, Weingart J, Keiling C, Massdorf T, Holinski-Feder E, German Hc (2011) Biallelic MLH1 SNP cDNA expression or constitutional promoter methylation can hide genomic rearrangements causing Lynch syndrome. J Med Genet 48(8):513–519. doi:10.1136/jmedgenet-2011-100050

    Article  CAS  PubMed  Google Scholar 

  39. Plazzer JP, Sijmons RH, Woods MO, Peltomaki P, Thompson B, Den Dunnen JT, Macrae F (2013) The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Fam Cancer 12(2):175–180. doi:10.1007/s10689-013-9616-0

    Article  CAS  PubMed  Google Scholar 

  40. Orimo H, Nakajima E, Yamamoto M, Ikejima M, Emi M, Shimada T (2000) Association between single nucleotide polymorphisms in the hMSH3 gene and sporadic colon cancer with microsatellite instability. J Hum Genet 45(4):228–230. doi:10.1007/s100380070031

    Article  CAS  PubMed  Google Scholar 

  41. Burdova K, Mihaljevic B, Sturzenegger A, Chappidi N, Janscak P (2015) The mismatch-binding factor MutSbeta can mediate ATR activation in response to DNA double-strand breaks. Mol Cell 59(4):603–614. doi:10.1016/j.molcel.2015.06.026

    Article  CAS  PubMed  Google Scholar 

  42. Kumar C, Eichmiller R, Wang B, Williams GM, Bianco PR, Surtees JA (2014) ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates. DNA Repair 18:18–30. doi:10.1016/j.dnarep.2014.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Du J, Campau E, Soragni E, Jespersen C, Gottesfeld JM (2013) Length-dependent CTG.CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells. Hum Mol Genet 22(25):5276–5287. doi:10.1093/hmg/ddt386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ezzatizadeh V, Pinto RM, Sandi C, Sandi M, Al-Mahdawi S, Te Riele H, Pook MA (2012) The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model. Neurobiol Dis 46(1):165–171. doi:10.1016/j.nbd.2012.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmidt MH, Pearson CE (2016) Disease-associated repeat instability and mismatch repair. DNA Repair 38:117–126. doi:10.1016/j.dnarep.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  46. Borresen AL, Lothe RA, Meling GI, Lystad S, Morrison P, Lipford J, Kane MF, Rognum TO, Kolodner RD (1995) Somatic mutations in the hMSH2 gene in microsatellite unstable colorectal carcinomas. Hum Mol Genet 4(11):2065–2072

    Article  CAS  PubMed  Google Scholar 

  47. Geurts-Giele WR, Leenen CH, Dubbink HJ, Meijssen IC, Post E, Sleddens HF, Kuipers EJ, Goverde A, van den Ouweland AM, van Lier MG, Steyerberg EW, van Leerdam ME, Wagner A, Dinjens WN (2014) Somatic aberrations of mismatch repair genes as a cause of microsatellite-unstable cancers. J Pathol 234(4):548–559. doi:10.1002/path.4419

    Article  CAS  PubMed  Google Scholar 

  48. Haraldsdottir S, Hampel H, Tomsic J, Frankel WL, Pearlman R, de la Chapelle A, Pritchard CC (2014) Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology 147(6):1308–1316 e1301. doi:10.1053/j.gastro.2014.08.041

  49. Herfarth KK, Kodner IJ, Whelan AJ, Ivanovich JL, Bracamontes JR, Wells SA Jr, Goodfellow PJ (1997) Mutations in MLH1 are more frequent than in MSH2 in sporadic colorectal cancers with microsatellite instability. Genes Chromosomes Cancer 18(1):42–49

    Article  CAS  PubMed  Google Scholar 

  50. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA, Goossens M, Ouchene H, Hendriks-Cornelissen SJ, Kwint MP, Hoogerbrugge N, Nagtegaal ID, Ligtenberg MJ (2014) Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 146(3):643–646 e648. doi:10.1053/j.gastro.2013.12.002

  51. Sourrouille I, Coulet F, Lefevre JH, Colas C, Eyries M, Svrcek M, Bardier-Dupas A, Parc Y, Soubrier F (2013) Somatic mosaicism and double somatic hits can lead to MSI colorectal tumors. Fam Cancer 12(1):27–33. doi:10.1007/s10689-012-9568-9

    Article  CAS  PubMed  Google Scholar 

  52. Zhang R, Qin W, Xu GL, Zeng FF, Li CX (2012) A meta-analysis of the prevalence of somatic mutations in the hMLH1 and hMSH2 genes in colorectal cancer. Colorectal Dis 14(3):e80–e89. doi:10.1111/j.1463-1318.2011.02858.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the German Cancer Aid (Deutsche Krebshilfe) and the Wilhelm Sander-Stiftung for their support of this work. We also thank all patients for their participation in this study, as well as their respective doctors for contributing clinical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Holinski-Feder.

Ethics declarations

Conflict of interest

The authors of the manuscript declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10689_2017_9975_MOESM1_ESM.bmp

Supplementary Fig. S1 Sequences of MSH3 exon 7 in genomic DNA. 1a shows the germline MSH3 nonsense variant c.1035del p.(Leu347*) heterozygously in blood of patient BS in the forward sequence, compared to a control above; 1b shows the MSH3 variant c.1035del p.(Leu347*) with an allelic reduction of the wildtype allele in the tumour DNAs of patient BS. 1c presents an additional somatic MSH3 frameshift c.1148del p.(Lys383Argfs*32) heterozygously or mosaic in the coding A8-tract in the two tumour DNAs of patient BS in the reverse sequence, which is absent in blood of the patient (above), as well as in tumours of other patients. (BMP 1634 KB)

Supplementary Fig. S2 (BMP 1533 KB)

10689_2017_9975_MOESM3_ESM.bmp

Supplementary Fig. S3 Sequences of MSH6 in genomic DNA in forward direction. 2a shows the germline variant in MSH6 exon 9 c.3969_3979del p.(Phe1323Leufs*14) heterozygously in patient BS in blood, compared to a control above; which was also present in both tumour DNAs of the patient (below) without a loss of one allele. 2b shows the hotspot variant in MSH6 exon 5 c.3261del p.(Phe1088Serfs*2) heterozygously in the coding C8-tract in both tumour DNAs of patient BS, which is absent in the germline of the patient (above). (BMP 1511 KB)

Supplementary Fig. S4 (BMP 1072 KB)

10689_2017_9975_MOESM5_ESM.xls

Supplementary Table S1 List of all MSH3 variants detected in the gene screening including rs, allelic frequencies in database and our control cohort, and classification. (XLS 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morak, M., Käsbauer, S., Kerscher, M. et al. Loss of MSH2 and MSH6 due to heterozygous germline defects in MSH3 and MSH6 . Familial Cancer 16, 491–500 (2017). https://doi.org/10.1007/s10689-017-9975-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-017-9975-z

Keywords

Navigation