Skip to main content

Advertisement

Log in

Methylation of the miR-126 gene associated with glioma progression

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

An Erratum to this article was published on 24 November 2015

Abstract

Gliomas are the most common and the most malignant brain tumors, accouting for 45–55 % of all intracranial tumors. The incidence of glioma worldwide is about 6–12 per 100,000. Recently, several studies showed that the activation of the oncogenes and the inactivation and/or loss of the tumor suppressor genes, especially for miRNA-21, let-7 and so on, are the most primary molecule event in gliomas. MicroRNAs (miRNAs) are a class of endogenously expressed small noncoding RNAs which are usually 21–23 nucleotides long. miRNAs regulate gene expression and play important roles in a variety of physiological and pathological processes, such as cell proliferation, differentiation and apoptosis. To date, Growing evidence has shown that mi RNAs are frequently dysregulated in human cancers and can act as both tumor suppressors and oncogenes. Along with the discovery of micro RNA, more and more research focusing on its relationship with glioma was carried out to investigate the biological features of glioma and to provide experimental evidence for glioma mechanism. In the present study, we aimed to verify the miRNA-126 down-regulation which showed in the results of glioma tissue miRNAs chip and discuss the miRNA-126 methylation in patients with glioma. A total of 50 samples from patients with glioma and 20 control samples from patients with cerebral trauma were included in this study. The expression levels of the miR-126 gene were detected using quantitative polymerase chain reaction (PCR), and the methylation status of miR-126 was examined using methylation-specific PCR-denaturing high-performance liquid chromatography (MSP–DHPLC). The expression level of miRNA-126 was found to be significantly higher in the control group (0.6134 ± 0.1214) than in the glioma group (0.2771 ± 0.1529; P < 0.05). The expression was also significantly elevated in low-grade gliomas (0.3117 ± 0.1474) compared with high-grade gliomas (0.1582 ± 0.1345; P < 0.05). In addition, increased methylation of miR-126 was found in 40 % of glioma patients in our study (20/50 cases), resulting in significantly decreased miR-126 expression (0.1715 ± 0.1376; P < 0.05). Our results indicate that we verified successfully the miRNA-126 down-regulation phenomenon in patients with glioma which showed in the results of glioma tissue miRNAs chip and the miRNA-126 down-regulation through methylation in patients with glioma. So we could say that epigenetic modification is a crucial mechanism for controlling the expression of miR-126 in glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Di Stefano AL, Enciso-Mora V, Marie Y, Desestret V, Labussiere M, Boisselier B et al (2013) Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro Oncol 15:542–547

    Article  PubMed  PubMed Central  Google Scholar 

  2. He LW, Shi R, Jiang L, Zeng Y, Ma WL, Zhou JY (2014) XRCC1 gene polymorphisms and glioma risk in Chinese population: a meta-analysis. PLoS One 9:e111981

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331

    Article  CAS  PubMed  Google Scholar 

  4. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  5. Yu J, Cai X, He J, Zhao W, Wang Q, Liu B (2012) Microarray-based analysis of gene regulation by transcription factors and microRNAs in glioma. Neurol Sci 34:1283–1289

    Article  PubMed  Google Scholar 

  6. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358

    Article  CAS  PubMed  Google Scholar 

  7. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hansen TF, Nielsen BS, Jakobsen A, Sorensen FB (2015) Intra-tumoural vessel area estimated by expression of epidermal growth factor-like domain 7 and microRNA-126 in primary tumours and metastases of patients with colorectal cancer: a descriptive study. J Transl Med 13:10

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  11. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Du YY, Lin YF, Chen YT, Yang L, Wang HJ et al (2008) The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun 377:136–140

    Article  CAS  PubMed  Google Scholar 

  13. Ebrahimi F, Gopalan V, Smith RA, Lam AK (2013) miR-126 in human cancers: clinical roles and current perspectives. Exp Mol Pathol 96:98–107

    Article  PubMed  Google Scholar 

  14. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26:775–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    Article  CAS  PubMed  Google Scholar 

  18. Kishi M, Nakamura M, Nishimine M, Ikuta M, Kirita T, Konishi N (2005) Genetic and epigenetic alteration profiles for multiple genes in salivary gland carcinomas. Oral Oncol 41:161–169

    Article  CAS  PubMed  Google Scholar 

  19. Nakahara Y, Shintani S, Mihara M, Hino S, Hamakawa H (2006) Detection of p16 promoter methylation in the serum of oral cancer patients. Int J Oral Maxillofac Surg 35:362–365

    Article  CAS  PubMed  Google Scholar 

  20. Moreira PR, Guimaraes MM, Guimaraes AL, Diniz MG, Gomes CC, Brito JA et al (2009) Methylation of P16, P21, P27, RB1 and P53 genes in odontogenic keratocysts. J Oral Pathol Med 38:99–103

    Article  CAS  PubMed  Google Scholar 

  21. Mirimanoff RO (2014) High-grade gliomas: reality and hopes. Chin J Cancer 33:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  23. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  26. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  27. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  28. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han L, Yue X, Zhou X, Lan FM, You G, Zhang W et al (2012) MicroRNA-21 expression is regulated by beta-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK. CNS Neurosci Ther 18:573–583

    Article  CAS  PubMed  Google Scholar 

  30. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  CAS  PubMed  Google Scholar 

  31. Xia HF, He TZ, Liu CM, Cui Y, Song PP, Jin XH et al (2009) MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell Physiol Biochem 23:347–358

    Article  CAS  PubMed  Google Scholar 

  32. Xia H, Qi Y, Ng SS, Chen X, Chen S, Fang M et al (2009) MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun 380:205–210

    Article  CAS  PubMed  Google Scholar 

  33. Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S et al (2009) microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 1269:158–165

    Article  CAS  PubMed  Google Scholar 

  34. Jiang L, Mao P, Song L, Wu J, Huang J, Lin C et al (2010) miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol 177:29–38

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu F, Zheng J, Mao Y, Dong P, Li G, Lu Z et al (2015) Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis. Biochem Biophys Res Commun 463:679–685

    Article  CAS  PubMed  Google Scholar 

  36. Xiong Y, Kotian S, Zeiger MA, Zhang L, Kebebew E (2015) miR-126-3p inhibits thyroid cancer cell growth and metastasis, and is associated with aggressive thyroid cancer. PLoS One 10:e0130496

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen H, Li L, Wang S, Lei Y, Ge Q, Lv N et al (2014) Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget 5:11873–11885

    Article  PubMed  PubMed Central  Google Scholar 

  38. Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379:726–731

    Article  CAS  PubMed  Google Scholar 

Download references

Funding information

The research was supported by the college and university research program of the education department of Inner Mongolia Autonomous Region (No. NJZY13420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Sun.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Mu, Y., Yu, L. et al. Methylation of the miR-126 gene associated with glioma progression. Familial Cancer 15, 317–324 (2016). https://doi.org/10.1007/s10689-015-9846-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-015-9846-4

Keywords

Navigation