Skip to main content
Log in

Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We use self-adjoint extensions of differential and integral operators to construct an asymptotic model of the Steklov spectral problem describing surface waves over a bank. Estimates of the modeling error are established, and the following unexpected fact is revealed: an appropriate self-adjoint extension of the operators of the limit problems provides an approximation to the eigenvalues not only in the low- and midfrequency ranges of the spectrum but also on part of the high-frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Stoker, Water Waves. The Mathematical Theory with Applications, John Willey & Sons, New York, 1992.

    Book  MATH  Google Scholar 

  2. S. A. Nazarov, “Concentration of trapped modes in problems of the linearized theory of water waves,” Mat. Sb., 199:12 (2008), 53–78; English transl.: Russian Acad. Sci. Sb. Math., 199:12 (2008), 1783–1807.

    Article  Google Scholar 

  3. M. Sh. Birman and M. Z. Solomiak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Reidel Publishing Company, Dordrecht-Boston-Lancaster-Tokyo, 1986.

    Book  Google Scholar 

  4. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, Berlin-Heidelberg, 1985.

    Book  MATH  Google Scholar 

  5. S. A. Nazarov, “Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions,” Zh. Vychisl. Matem. Matem. Fiz., 52:11 (2012), 2033–2049; English transl.: Comput. Math. Math. Phys., 52:11 (2012), 1574–1589.

    MATH  Google Scholar 

  6. M. Lobo and E. Pérez, “Local problems for vibrating systems with concentrated masses: a review,” C. R. Mecanique, Acad. Sci. Paris, 331:4 (2003), 303–317.

    Article  MATH  Google Scholar 

  7. J. Sanchez-Hubert and E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Berlin etc., 1989.

    Book  MATH  Google Scholar 

  8. W. G. Mazja, S. A. Nazarov, and B. A. Plamenewski, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. 1, Birkhäuser, Basel, 2000.

    Google Scholar 

  9. F. A. Berezin and L. D. Faddeev, “A remark on Schrödinger’s equation with a singular potential,” Dokl. Akad. Nauk SSSR, 137:5 (1961), 1011–1014; English transl.: Soviet Math. Dokl., 2 (1961), 372–375.

    MathSciNet  Google Scholar 

  10. B. S. Pavlov, “The theory of extensions and explicitly-soluble models,” Uspekhi Mat. Nauk, 42:6 (1987), 99–131; English transl.: Russian Math. Surveys, 42:6 (1987), 127–168.

    MATH  MathSciNet  Google Scholar 

  11. Yu. N. Demkov and V. N. Ostrovskii, Zero-Range Potentials and Their Applications in Atomic Physics, Plenum Press, New York, 1988.

    Book  Google Scholar 

  12. S. A. Nazarov, “Asymptotic conditions at a point, self-adjoint extensions of operators and the method of matched asymptotic expansions,” Trudy St. Petersburg Mat. Obshch., 5 (1996), 112–183; English transl.: Trans. Amer. Math. Soc., Ser. 2, 193 (1999), 77–126.

    Google Scholar 

  13. I. V. Kamotckii and S. A. Nazarov, “Spectral problems in singularly perturbed domains and self-adjoint extensions of differential operators,” Trudy St. Petersburg Mat. Obshch., 6 (1998), 151–212; English transl.: Trans. Amer. Math. Soc., Ser. 2, 199 (2000), 127–181.

    Google Scholar 

  14. M. D. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic Press, New York, 1964.

    MATH  Google Scholar 

  15. A. M. Ilin, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1992.

    Google Scholar 

  16. S. A. Nazarov, “Elliptic boundary value problems on hybrid domains,” Funkts. Anal. Prilozhen., 38:4 (2004), 55–72; English transl.: Functional Anal. Appl., 38:4 (2004), 283–297.

    Article  Google Scholar 

  17. S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions. 1,” Trudy Semin. im. I. G. Petrovskogo, 18 (1995), 3–78; English transl.: J. Math. Sci., 80:5 (1996), 1989–2034.

    Google Scholar 

  18. S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions. 2,” Trudy Semin. im. I. G. Petrovskogo, 20 (1997), 155–195; English transl.: J. Math. Sci., 97:3 (1999), 4085–4108.

    Google Scholar 

  19. S. A. Nazarov, “Asymptotic analysis and modeling of the jointing of a massive body with thin rods,” Trudy Semin. im. I. G. Petrovskogo, 24 (2004), 95–214; English transl.: J. Math. Sci., 127:5 (2003), 2172–2262.

    Google Scholar 

  20. V. A. Kozlov, V. G. Maz’ya, and A. B. Movchan, Asymptotic Analysis of Fields in Multi-Structures, Clarendon Press, Oxford, 1999.

    MATH  Google Scholar 

  21. J. L. Lions, “Some more remarks on boundary value problems and junctions,” in: Asymptotic Methods for Elastic Structures (Lisbon, 1993), de Gruyter, Berlin-New York, 1995, 103–118.

    Google Scholar 

  22. M. Sh. Birman and G. E. Skvortsov, “On the square integrability of higher derivatives for the solution of the Dirichlet problem in a domain with piecewise smooth boundary,” Izv. Vyssh. Uchebn. Zaved., Ser. Matem., 1962:5 (1962), 11–21.

    Google Scholar 

  23. V. G. Maz’ya and B. A. Plamenevskii, “L p- and Hölder class estimates and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary,” Math. Nachr., 81 (1978), 25–82.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter, Berlin-New York, 1994.

    Book  MATH  Google Scholar 

  25. V. I. Lebedev and V. I. Agoshkov, Poincaré-Steklov Operators and Their Applications in Analysis, Vych. Tsentr Akad. Nauk SSSR, Moscow, 1983.

    MATH  Google Scholar 

  26. V. I. Smirnov, A Course of Higher Mathematics. Vol. II: Advanced Calculus, International Series of Monographs in Pure and Applied Mathematics, vol. IX, Pergamon Press, Oxford-London-Edinburgh-New York-Paris-Frankfurt, 1964.

    Google Scholar 

  27. S. A. Nazarov and B. A. Plamenevskii, “A generalized Green’s formula for elliptic problems in domains with edges,” Problemy Matem. Analiza, 13 (1992), 106–147; English transl.: J. Math. Sci., 73:6 (1995), 674–700.

    Google Scholar 

  28. F. S. Rofe-Beketov, “Self-adjoint extensions of differential operators in the space of vector functions,” Dokl. Akad. Nauk SSSR, 184 (1969), 1034–1037; English transl.: Soviet Math. Dokl., 10 (1969), 188—192.

    MathSciNet  Google Scholar 

  29. M. I. Vishik and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with a small parameter,” Uspekhi Mat. Nauk, 12:5 (1957), 3–122.

    MATH  MathSciNet  Google Scholar 

  30. S. A. Nazarov, “The Vishik-Lyusternik method for elliptic boundary value problems in regions with conical points. II. Problem in a bounded domain,” Sibirsk.Mat. Zh., 22:5 (1981), 132–152; English transl.: Siberian Math. J., 22 (1982), 753–769.

    MATH  MathSciNet  Google Scholar 

  31. N. Kh. Arutyunian and S. A. Nazarov, “On singularities of the stress function at the corner points of the transverse cross section of a twisted bar with a thin reinforcing layer,” Prikl. Mat. Mekh., 47:1 (1983), 122–132; English transl.: J. Appl. Math. Mech., 47:1 (1984), 94–103.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 49, No. 1, pp. 31–48, 2015

Original Russian Text Copyright © by S. A. Nazarov

Supported by RFBR grant 15-01-02175.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Modeling of a singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems. Funct Anal Its Appl 49, 25–39 (2015). https://doi.org/10.1007/s10688-015-0080-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-015-0080-5

Key words

Navigation