Skip to main content
Log in

“Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We construct a solution of an analogue of the Schrödinger equation for the Hamiltonian H 1(z, t, q 1, q 2, p 1, p 2) corresponding to the second equation P 21 in the Painlevé I hierarchy. This solution is obtained by an explicit change of variables from a solution of systems of linear equations whose compatibility condition is the ordinary differential equation P 21 with respect to z. This solution also satisfies an analogue of the Schrödinger equation corresponding to the Hamiltonian H 2(z, t, q 1, q 2, p 1, p 2) of a Hamiltonian system with respect to t compatible with P 21 . A similar situation occurs for the P 22 equation in the Painlevé II hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Garnier, “Sur des équations differentielles du troisi`eme ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes,” Ann. Sci. École Normale Sup. (3), 29 (1912), 1–126.

    MathSciNet  MATH  Google Scholar 

  2. B. I. Suleimanov, “The Hamiltonian structure of Painlevé equations and the method of isomonodromic deformations,” in: Asymptotic Properties of Solutions of Differential Equations [in Russian], Inst. Mat. Bashkir. Nauchn. Tsentra Ural. Otd. Akad. Nauk SSSR, Ufa, 1988, 93–102.

    Google Scholar 

  3. B. I. Suleimanov, “Hamiltonian property of the Painlevé equations and the method of isomonodromic deformations,” Differentsial’nye Uravneniya, 30:5 (1994), 791–796; English transl.: Differential Equations, 30:5 (1994), 726–732.

    MathSciNet  Google Scholar 

  4. B. I. Suleimanov, “‘Quantizations’ of the second Painlevé equation and the problem of the equivalence of its L-A pairs,” Teoret. Mat. Fiz., 156:3 (2008), 364–378; English transl.: Theoret. Math. Phys., 156:3 (2008), 1280–1291.

    Article  MathSciNet  Google Scholar 

  5. A. I. Ovseevich, “The Kalman filter and quantization,” Dokl. Ross. Akad. Nauk, 414:6 (2007), 732–735; English transl.: Russian Acad. Sci. Dokl. Math., 75:3 (2007), 436–439.

    MathSciNet  Google Scholar 

  6. A. I. Ovseevich, “Kalman filter and quantization,” Probl. Peredachi Inform., 44:1 (2008), 59–79; English transl.: Probl. Inform. Transmission, 44:1 (2008), 53–71.

    MathSciNet  Google Scholar 

  7. D. P. Novikov, “The 2×2 matrix Schlesinger system and the Belavin-Polyakov-Zamolodchikov system,” Teoret. Mat. Fiz., 161:2 (2009), 191–203; English transl.: Theoret. Math. Phys., 161:2 (2009), 1485–1496.

    Article  MathSciNet  Google Scholar 

  8. D. P. Novikov, “A monodromy problem and some functions connected with Painlevé VI,” in: Painlevé Equations and Related Topic. Proceedings of the International Conference, Mezhdun. Mat. Inst. im. L. Eulera, St. Petersburg, 2011, 118–121.

    Google Scholar 

  9. H. Nagoya, “Hypergeometric solutions to Schrödinger equation for the quantum Painlevé equations,” J. Math. Phys., 52:8 (2011).

    Google Scholar 

  10. A. Zabrodin and A. Zotov, “Quantum Painlevé-Calogero correspondence,” J. Math. Phys., 53:7 (2012), 073507; http://arxiv.org/abs/1107.5672.

    Article  MathSciNet  Google Scholar 

  11. B. I. Suleimanov, “’Quantum’ linearization of Painlevé equations as a component of their L, A pairs,” Ufimsk. Mat. Zh., 4:2 (2012), 127–135; English transl.: Ufa Math. J., 4:2 (2012), 127–136.

    Google Scholar 

  12. G. Moore, “Geometry of the string equations,” Comm. Math. Phys., 133:2 (1990), 261–304.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. V. Kitaev, “Turning points of linear systems and double asymptotics of the Painlevé transcendents,” Zap. Nauchn. Sem. LOMI, 187 (1991), 53–74; English transl.: J. Math. Sci., 73:4 (1995), 446–459.

    MATH  Google Scholar 

  14. B. I. Suleimanov, “Onset of nondissipative shock waves and the nonperturbative quantum theory of gravitation,” Zh. Eksp. Teor. Fiz., 105:5 (1994), 1089–1099; English transl.: J. Exper. Theor. Phys., 78:5 (1994), 583–587.

    MathSciNet  Google Scholar 

  15. A. V. Gurevich and L. P. Pitaevskii, “Breaking a simple wave in the kinetics of a rarefied plasma,” Zh. Eksp. Teor. Fiz., 60:6 (1971), 2155–2174; English transl.: Sov. J. Exper. Theor. Phys., 33:2 (1971), 1159–1167.

    MathSciNet  Google Scholar 

  16. A. V. Gurevich and L. P. Pitaevskii, “Nonstationary structure of a collisionless shock wave,” Zh. Eksp. Teor. Fiz., 65:2 (1973), 590–604; English transl.: Sov. J. Exper. Theor. Phys., 38:2 (1974), 291–297.

    Google Scholar 

  17. V. Kudashev and B. Suleimanov, “A soft mechanism for generation the dissipationless shock waves,” Phys. Lett. A, 221:3 (1996), 204–208.

    Article  Google Scholar 

  18. V. R. Kudashev and B. I. Suleimanov, “Soft mode of the formation of dissipationless shock waves” [in Russian], in: Complex Analysis, Differential Equations, Numerical Methods, and Applications. III, Inst. Mat. s Vychisl. Tsentrom, Ufa, 1996, 98–108; http://matem.anrb.ru/e_lib/preprints/BS/bs22.html.

    Google Scholar 

  19. G. V. Potemin, “Algebro-geometric construction of self-similar solutions of the Whitham equations,” Uspekhi Mat. Nauk, 43:5(263) (1988), 211–213; English transl.: Russian Math. Surveys, 43:5 (1988), 252–253.

    MathSciNet  Google Scholar 

  20. R. Garifullin, B. Suleimanov, and N. Tarkhanov, “Phase shift in the Whitham zone for the Gurevich-Pitaevsky special solution of the Korteveg-de Vries equation,” Phys. Lett. A, 374:13–14 (2010), 1420–1424.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Claeys, “Asymptotics for a special solutions to the second member of the Painlevé I hierarchy,” J. Phys. A, 43 (2010), 434012.

    Article  MathSciNet  Google Scholar 

  22. B. I. Suleimanov, “Asymptotics of the Gurevich-Pitaevskii universal special solution of the Korteweg-De Vries equation as |x| →∞,” Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 18:2 (2012), 245–253; English transl.: Proc. Steklov Inst. Math., 281:1 Suppl. (2013), 137–145.

    Google Scholar 

  23. T. Claeys and M. Vanlessen, “The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation,” Nonlinearity, 20:5 (2007), 1163–1184.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. R. Kudashev and B. I. Suleimanov, “The effect of small dissipation on the origin of onedimensional shock waves,” Prikl. Mat. Mekh., 65:3 (2001), 456–466; English transl.: J. Appl. Math. Mech., 65:3 (2001), 441–451.

    MathSciNet  MATH  Google Scholar 

  25. B. Dubrovin, “On universality of critical behaviour in hamiltonian PDEs,” in: Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, vol. 224, Amer. Math. Soc., Providence, RI, 2008, 59–109; http://arxiv.org/abs/0804.3790.

    Google Scholar 

  26. B. Dubrovin, “On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: Universality of critical behaviour,” Comm. Math. Phys., 267:1 (2006), 117–139.

    Article  MathSciNet  MATH  Google Scholar 

  27. É. Brésin, E. Marinari, and G. Parisi, “A nonperturbative ambiguity free solution of a string model,” Phys. Lett. B, 242:1 (1990), 35–38.

    Article  MathSciNet  Google Scholar 

  28. M. Douglas, N. Seiberg, and S. Shenker, “Flow and instability in quantum gravity,” Phys. Lett. B, 244:3–4 (1990), 381–385.

    Article  MathSciNet  Google Scholar 

  29. A. R. Its, “’Isomonodromy’ solutions of equations of zero curvature,” Izv. Akad. Nauk SSSR, Ser. Mat., 49:3 (1985), 530–565; English transl.: Math. USSR-Izv., 26:3 (1986), 497–529.

    MathSciNet  MATH  Google Scholar 

  30. B. A. Dubrovin, “Theta functions and non-linear equations,” Uspekhi Mat. Nauk, 36:2(218) (1981), 11–80; English transl.: Russian Math. Surveys, 36:2 (1981), 11–92.

    MathSciNet  Google Scholar 

  31. B. I. Suleimanov, “The second Painlevé equation in a problem on nonlinear effects near caustics,” Zap. Nauchn. Sem. LOMI, 187 (1991), 110–128; English transl.: J. Math. Sci., 73:4 (1995), 482–493.

    Google Scholar 

  32. A. V. Kitaev, “Caustics in 1+1 integrable systems,” J. Math. Phys., 35:6 (1994), 2934–2954.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Haberman and Ren-ji Sun, “Nonlinear cusped caustics for dispersive waves,” Stud. Appl. Math., 72:1 (1985), 1–37.

    MathSciNet  MATH  Google Scholar 

  34. V. R. Kudashev and B. I. Suleimanov, “Characteristic features of some typical spontaneous intensity collapse processes in unstable media,” Pis’ma v Zh. Eksp. Teor. Fiz., 62:4 (1995), 358–362; English transl.: J. Exper. Teor. Phys. Lett., 62:4 (1995), 382–388.

    Google Scholar 

  35. M. V. Fedoryuk, Asymptotics: Integrals and Series [in Russian], Nauka, Moscow, 1987.

    Google Scholar 

  36. K. Okamoto, “The Hamiltonians associated to the Painlevé equations,” in: The Painlevé property: one century later, Springer-Verlag, New York-Berlin-Heidelberg, 1999, 735–787.

    Chapter  Google Scholar 

  37. H. Kimura, “The degeneration of the two-dimensional Garnier system and the polynomial Hamiltonian structure,” Ann. Mat. Pura Appl., 155 (1989), 25–74.

    Article  MathSciNet  MATH  Google Scholar 

  38. V. P. Maslov, “Critical indices as a consequence of Wiener quantization of thermodynamics,” Teor. Mat. Fiz., 170:3 (2012), 457–467; English transl.: Theor. Math. Phys., 170:3 (2012), 384–393.

    Article  Google Scholar 

  39. M. Sato, T. Miwa, and M. Jimbo, “Holonomic quantum fields. II. The Riemann-Hilbert problem,” Res. Inst. Math. Sci., 15:1 (1979), 201–278.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Schlesinger, “Über eine Klasse von Differentialsystemen beliebeger Ordnung mit festen kritischen Punkten,” J. für Math., 141 (1912), 96–145.

    MATH  Google Scholar 

  41. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys. B, 241:2 (1984), 333–380.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Suleimanov.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 48, No. 3, pp. 52–62, 2014

Original Russian Text Copyright © by B. I. Suleimanov

This work was supported by the Russian Science Foundation, grant 14-11-00078.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleimanov, B.I. “Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom. Funct Anal Its Appl 48, 198–207 (2014). https://doi.org/10.1007/s10688-014-0061-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-014-0061-0

Key words

Navigation