Skip to main content
Log in

Anisotropic Brown-Resnick space-time processes: estimation and model assessment

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Spatially isotropic max-stable processes have been used to model extreme spatial or space-time observations. One prominent model is the Brown-Resnick process, which has been successfully fitted to time series, spatial data and space-time data. This paper extends the process to possibly anisotropic spatial structures. For regular grid observations we prove strong consistency and asymptotic normality of pairwise maximum likelihood estimates for fixed and increasing spatial domain, when the number of observations in time tends to infinity. We also present a statistical test for isotropy versus anisotropy. We apply our test to precipitation data in Florida, and present some diagnostic tools for model assessment. Finally, we present a method to predict conditional probability fields and apply it to the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes Theory and Applications. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  • Blanchet, J., Davison, A.: Spatial modeling of extreme snow depth. Ann Appl Stat 5(3), 1699–1724 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Bolthausen, E.: On the central limit theorem for stationary mixing random fields. Ann Probab 10(4), 1047–1050 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Bradley, R.: Introduction to Strong Mixing Conditions, vol. I. Kendrick Press, Heber City (2007)

    MATH  Google Scholar 

  • Brown, B., Resnick, S.: Extreme values of independent stochastic processes. J Appl Probab 14(4), 732–739 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Buhl, S.: Modelling and Estimation of Extremes in Space and Time. Master’s thesis, Technische Universität München, available under https://mediatum.ub.tum.de/doc/1145694/1145694.pdf (2013)

  • Davis, R., Klüppelberg, C., Steinkohl, C.: Max-stable processes for modeling extremes observed in space and time. J Korean Stat Soc 42(3), 399–414 (2013a)

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, R., Klüppelberg, C., Steinkohl, C.: Statistical inference for max-stable processes in space and time. J Roy Stat Soc B 75(5), 791–819 (2013b)

    Article  MathSciNet  MATH  Google Scholar 

  • Davison, A., Padoan, S., Ribatet, M.: Statistical modelling of spatial extremes. Stat Sci 27(2), 161–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • De Haan, L.: A spectral representation for max-stable processes. Ann Probab 12(4), 1194–1204 (1984)

  • Doksum, K., Sievers, G.: Plotting with confidence: graphical comparisons of two populations. Biometrika 63(3), 421–434 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Dombry, C., Eyi-Minko, F.: Strong mixing properties of max-infinitely divisible random fields. Stoch Proc Appl 122(11), 3790–3811 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Dombry, C., Engelke, S., Oesting, M.: Exact simulation of max-stable processes. Biometrika 103 (2016). to appear

  • Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  • Engelke, S., Malinowski, A., Kabluchko, Z., Schlather, M.: Estimation of Hüler-Reiss distributions and Brown-Resnick processes. J Roy Stat Soc B 77(1), 239–265 (2015)

    Article  MathSciNet  Google Scholar 

  • Gabda, D., Towe, R., Wadsworth, J., Tawn, J.: Discussion of “Statistical modelling of spatial extremes” by A.C. Davison, S.A. Padoan and M. Ribatet. Stat Sci 27(2), 189–192 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilleland, E., Katz, R.W.: New software to analyze how extremes change over time. Eos 92(2), 13–14 (2011)

    Article  Google Scholar 

  • Giné, E., Hahn, M.G., Vatan, P.: Max-infinitely divisible and max-stable sample continuous processes. Probab Theory Rel 87, 139–165 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Huser, R., Davison, A.: Space-time modelling of extreme events. J Roy Stat Soc B 76(2), 439–461 (2014)

    Article  MathSciNet  Google Scholar 

  • Hüsler, J., Reiss, R.D.: Maxima of normal random vectors: between independence and complete dependence. Stat Probabil Lett 7(4), 283–286 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Ibragimov, I., Linnik, Y.: Independent and Stationary Sequences of Random Variables. Groningen, Wolters-Noordhoff (1971)

    MATH  Google Scholar 

  • Johnson, N., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, 2nd edn, vol. 2. Wiley, New York (1995)

    MATH  Google Scholar 

  • Kabluchko, Z., Schlather, M., de Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann Probab 37(5), 2042–2065 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Leber, D.: Comparison of Simulation Methods of Brown-Resnick Processes. Master’s thesis, Technische Universität München, available under https://mediatum.ub.tum.de/doc/1286600/1286600.pdf (2015)

  • Nott, D.J., Rydén, T.: Pairwise likelihood methods for inference in image models. Biometrika 86(3), 661–676 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Oesting, M.: Simulationsverfahren Für Brown-Resnick-Prozesse. Diploma thesis, Georg-August-Universität zu Göttingen, available under arXiv:0911.4389v2 (2009)

  • Padoan, S., Ribatet, M., Sisson, S.: Likelihood-based inference for max-stable processes. J Am Stat Assoc 105(489), 263–277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Politis, D.N., Romano, J.P.: Nonparametric resampling for homogeneous strong mixing random fields. J Multivariate Anal 47, 301–328 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Politis, D.N., Romano, J.P., Wolf, M.: Subsampling. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Steinkohl, C.: Statistical Modelling of Extremes in Space and Time Using Max-Stable Processes. Dissertation, Technische Universität München, available under https://mediatum.ub.tum.de/doc/1120541/1120541.pdf (2013)

  • Straumann, D.: Estimation in Conditionally Heteroscedastic Time Series Models. Lecture Notes in Statistics, No 182. Springer, Berlin (2004)

    Google Scholar 

  • Wadsworth, J., Tawn, J.: Efficient inference for spatial extreme value processes associated to log-gaussian random functions. Biometrika 101(1), 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Wald, A.: Note on the consistency of the maximum likelihood estimate. Ann Math Stat 20(4), 595–601 (1949)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Buhl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buhl, S., Klüppelberg, C. Anisotropic Brown-Resnick space-time processes: estimation and model assessment. Extremes 19, 627–660 (2016). https://doi.org/10.1007/s10687-016-0257-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-016-0257-1

Keywords

AMS 2000 Subject Classifications

Navigation