Skip to main content
Log in

Distribution of the height of local maxima of Gaussian random fields

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

Let {f(t) : tT} be a smooth Gaussian random field over a parameter space T, where T may be a subset of Euclidean space or, more generally, a Riemannian manifold. We provide a general formula for the distribution of the height of a local maximum ℙ{f(t 0) > u|t 0 is a local maximum of f(t)} when f is non-stationary. Moreover, we establish asymptotic approximations for the overshoot distribution of a local maximum ℙ{f(t 0) > u+v|t 0 is a local maximum of f(t) and f(t 0) > v} as \(v\to \infty \). Assuming further that f is isotropic, we apply techniques from random matrix theory related to the Gaussian orthogonal ensemble to compute such conditional probabilities explicitly when T is Euclidean or a sphere of arbitrary dimension. Such calculations are motivated by the statistical problem of detecting peaks in the presence of smooth Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, R.J.: The Geometry of Random Fields. Wiley, New York (1981)

    MATH  Google Scholar 

  • Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, New York (2007)

    MATH  Google Scholar 

  • Adler, R.J., Taylor, J.E., Worsley, K.J.: Applications of Random Fields and Geometry: Foundations and Case Studies. In preparation (2012)

  • Auffinger, A.: Random Matrices, Complexity of Spin Glasses and Heavy Tailed Processes. Ph.D Thesis, New York University (2011)

  • Azaïs, J.-M., Wschebor, M.: A general expression for the distribution of the maximum of a Gaussian field and the approximation of the tail. Stoch. Process. Appl. 118, 1190–1218 (2008)

    Article  MATH  Google Scholar 

  • Azaïs, J.-M., Wschebor, M.: Erratum to: A general expression for the distribution of the maximum of a Gaussian field and the approximation of the tail [Stochastic Process. Appl. 118 (7) (2008) 1190–1218]. Stoch. Process. Appl. 120, 2100–2101 (2010)

    Article  MATH  Google Scholar 

  • Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S.: The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15–61 (1985)

    Article  Google Scholar 

  • Belyaev, Yu. K.: Bursts and shines of random fields. Dokl. Akad. Nauk SSSR 176, 495–497 (1967). Soviet Math. Dokl. 8, 1107–1109

  • Belyaev, Y.K.: Point processes and first passage problems. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. II, Probability Theory, pp. 1–17. University of California Press (1972)

  • Cheng, D., Xiao, Y.: Excursion probability of Gaussian random fields on sphere. arXiv:1401.5498 (2014)

  • Cheng, D., Schwartzman, A.: Multiple testing of local maxima for detection of peaks in random fields. arXiv:1405.1400 (2014)

  • Cramér, H., Leadbetter, M. R.: Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications. Wiley, New York (1967)

    MATH  Google Scholar 

  • Fyodorov, Y.V.: Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. Phys. Rev. Lett. 92, 240601 (2004)

  • Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19, 1327–1349 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Larson, D.L., Wandelt, B.D.: The hot and cold spots in the Wilkinson microwave anisotropy probe data are not hot and cold enough. Astrophys. J. 613, 85–88 (2004)

    Article  Google Scholar 

  • Lindgren, G.: Local maxima of Gaussian fields. Ark. Mat. 10, 195–218 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  • Lindgren, G.: Wave characteristics distributions for Gaussian waves – wave-length, amplitude and steepness. Ocean Eng. 9, 411–432 (1982)

    Article  Google Scholar 

  • Longuet-Higgins, M.S.: On the statistical distribution of the heights of sea waves. J. Mar. Res. 11, 245–266 (1952)

    Google Scholar 

  • Longuet-Higgins, M.S.: On the statistical distribution of the heights of sea waves: some effects of nonlinearity and finite band width. J. Geophys. Res. 85, 1519–1523 (1980)

    Article  Google Scholar 

  • Marinucci, D., Peccati, G.: Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  • Nosko, V.P.: The characteristics of excursions of Gaussian homogeneous random fields above a high level. In: Proceedings USSR-Japan Symposium on Probability (Khabarovsk, 1969), pp. 11–18. Novosibirsk (1969)

  • Nosko, V.P.: On shines of Gaussian random fields. Vestnik Moskov. Univ. Ser. I Mat. Meh. 25, 18–22 (1970a)

    MATH  MathSciNet  Google Scholar 

  • Nosko, V.P.: The investigation of level excursions of random processes and fields. Unpublished dissertation for the degree of Candidate of Physics and Mathematics, Lomonosov Moscow State University, Faculty of Mechanics and Mathematics (1970b)

  • Piterbarg, V.I.: Rice’s method for large excursions of Gaussian random fields. Technical Report NO 478. Center for Stochastic Processes, Univ. North Carolina (1996)

    Google Scholar 

  • Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  • Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  • Schwartzman, A., Gavrilov, Y., Adler, R.J.: Multiple testing of local maxima for detection of peaks in 1D. Ann. Stat. 39, 3290–3319 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Sobey, R.J.: The distribution of zero-crossing wave heights and periods in a stationary sea state. Ocean Eng. 19, 101–118 (1992)

    Article  Google Scholar 

  • Szegö, G.: Othogonal Polynomials. American Mathematical Society, Providence (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Cheng.

Additional information

Research partially supported by NIH grant R01-CA157528.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D., Schwartzman, A. Distribution of the height of local maxima of Gaussian random fields. Extremes 18, 213–240 (2015). https://doi.org/10.1007/s10687-014-0211-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-014-0211-z

Keywords

AMS 2000 Subject Classifications

Navigation