Skip to main content
Log in

Astronomical context coder for image compression

  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Recent lossless still image compression formats are powerful tools for compression of all kind of common images (pictures, text, schemes, etc.). Generally, the performance of a compression algorithm depends on its ability to anticipate the image function of the processed image. In other words, a compression algorithm to be successful, it has to take perfectly the advantage of coded image properties. Astronomical data form a special class of images and they have, among general image properties, also some specific characteristics which are unique. If a new coder is able to correctly use the knowledge of these special properties it should lead to its superior performance on this specific class of images at least in terms of the compression ratio. In this work, the novel lossless astronomical image data compression method will be presented. The achievable compression ratio of this new coder will be compared to theoretical lossless compression limit and also to the recent compression standards of the astronomy and general multimedia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anisimova, E., Bednar, J., Blazek, M., Janout, P., Fliegel, K., et al.: Estimation and measurement of space-variant features of imaging systems and influence of this knowledge on accuracy of astronomical measurement. In Applications of Digital Image Processing XXXVII. Bellingham: SPIE, art. no. 92171E, p. 92171E-1-92171E-13 (2014)

  2. Anisimova, E., Fliegel, K., Blazek, M., Janout, P., Bednar, J., et al.: Analysis of images obtained from space-variant astronomical imaging systems. In Applications of Digital Image Processing XXXVI. Bellingham (stát Washington): SPIE, art. no. 7, p. 885607-1-885607-11 (2013)

  3. Banon, G.J.F., Barrera, J., Braganeto, U.M.: Mathematical morphology and its application to signal and image processing. Proceeding of the 8th international symposium on mathematical morphology, ISBN 978-85-17-00032-4 (2007)

  4. Bloomfield, V.A.: Using R for Numerical Analysis in Science and Engineering. Chapman & Hall/CRC, Boca Raton: CRC Press, ISBN 978143-9-884485 (2014)

  5. Castro Tirado, A.J., Bernas, M., Rezek, M., Soldan, J., Pata, P., et al.: The Burst Observer and Optical Transient Exploring System (BOOTES). In Astronomy and Astrophysics: Gamma-Ray Bursts in the Afterglow Era. Les Ulis: EDP Sciences, p. 583–585 (1999)

  6. Castro-Tirado, A.J., Sánchez Moreno, F.M., Pérez del Pulgar, C., Azócar, D., Beskin, G., et al.: The GLObal Robotic telescopes Intelligent Array for E-Science (GLORIA). In III Workshop on Robotic Autonomous Observatories. México: Universidad Nacional Autónoma de México, p. 104–109 (2014)

  7. CCSDS: Lossless Data Compression, Recommendation for space data system standards, CCSDS, Vol. 121.0-B-1 (1997)

  8. GLORIA team: GLObal Robotic-telescopes Intelligent Array, [online], http://gloria-project.eu/en/ (2015)

  9. ISO/IEC 15444-1:2000: JPEG2000 Image Coding System (core coding system), [online], http://www.jpeg.org/FCD15444-1.htm (2000)

  10. Izenman, A.J.: Recent developments in nonparametric density estimation. J. Am. Stat. Assoc. 86(413), 205–224 (1991)

    MATH  MathSciNet  Google Scholar 

  11. Janout, P., Pata, P., Bednar, J., Anisimova, E., Blazek, M., et al.: Stellar objects identification using wide-field camera. In Proc. SPIE 9450, Photonics, Devices, and Systems VI. Bellingham: SPIE, art. no. 94501I, p. 94501I-1-94501I-9 (2015)

  12. Jelinek, M., Kubanek, P., Hudec, R., Nekola, M., Topinka, M., Strobl J.: BART - Burst alert robotic telescope, the astrophysics of cataclysmic variables and related objects. Proceedings of ASP Conference Vol. 330. Edited by J.-M. Hameury and J.-P. Lasota. San Francisco: Astronomical Society of the Pacific, p. 481 (2005)

  13. Klima, M., Fliegel, K., Pata, P., Vitek, S., Blazek, M., et al.: DEIMOS - an open source image database. Radioengineering 20(4), 1016–1023 (2011)

    Google Scholar 

  14. Koenker, R., d’ Orey, V.: Remark AS R92: a remark on algorithm AS 229: Computing dual regression quantiles and regression rank scores. Applied Statistics, Blackwell Publishers, 410–414 (1994)

  15. Koenker, R.: Quantile Regression, [online], http://cran.r-project.org/web/packages/quantreg/quantreg.pdf (2014)

  16. Koten, P., Fliegel, K., Vitek, S., Pata, P.: Automatic video system for continues monitoring of the meteor activity. Earth Moon Planet. 108(1), 69–76 (2011)

    Article  ADS  Google Scholar 

  17. Manders, C., Farbiz, F., Mann, S.: A compression method for arbitrary precision floating-point images, image processing. ICIP 2007. IEEE International Conference on, vol.4, no., pp.IV - 165,IV - 168, Sept. 16 2007–Oct. 19 2007 (2007)

  18. Official JPEG homepage, [online], http://www.jpeg.org (2015)

  19. Pata, P.: Influence of the lossy compression JPEG2000 standard on the deformation of PSF. Acta Polytech. 51(6), 54–56 (2011)

    Google Scholar 

  20. Pavlov, I.: 7-ZIP, [online], http://www.7-zip.org/ (2015)

  21. Pence, W., Seaman, R., White, R.: Lossless astronomical image compression and the effects of noise. Astron. Soc. Pac. 121(878), 414–427 (2009)

    Article  ADS  Google Scholar 

  22. Pence, W.D., Seaman, R., White, R.L.: Fpack FITS image compression utility, [online], http://heasarc.gsfc.nasa.gov/fitsio/fpack/fpackguide.pdf (2010)

  23. Pinheiro, A., Fliegel, K., Korshunov, P., Krasula, L., Bernardo, M., et al.: Performance evaluation of the emerging JPEG XT image compression standard. In 2014 I.E. 16th International Workshop on Multimedia Signal Processing (MMSP). Piscataway: IEEE (2014)

  24. Portnoy, S., Koenker, R.: The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators. Stat. Sci. Inst. Math. Stat. 12(4), 279–300 (1997)

    MATH  MathSciNet  Google Scholar 

  25. Rice, R.F., Yeh, P.-S., Miller, W.: Algorithms for a very high speed universal noiseless coding module. JPL Publication 91-1, Jet Propulsion Laboratory, Pasadena, CA (1991)

  26. Schindler, J.: Astronomical image data compression, doctoral thesis, CTU in Prague (2010)

  27. Schindler, J., Pata, P.: Spatially Adaptive DWT for image compression. In Photonics, Devices, and Systems III. Bellingham: SPIE, p. 21-1-21-6 (2006)

  28. Seaman, R., Pence, W., White, R.: Astronomical tiled image compression: how & why. Astronomical Data Analysis Software and Systems XVI. 30 (2006)

  29. Shamir, L., Nemiroff, R.J.: PHOTZIP: a lossy FITS image compression algorithm that protects user-defined levels of photometric integrity. Astron. J. 129, 539–546 (2005)

    Article  ADS  Google Scholar 

  30. Starck, J.L., Murtagh, F., Louys, M.: Astronomical image compression using the pyramidal median transform. Astronomical Data Analysis SOftware and Systems IV, ASP Conference Series. 77 (1995)

  31. Svihlik, J., Fliegel, K., Koten, P., Vitek, P.: Pata: noise analysis of MAIA system and possible noise suppression. Radioengineering 20(1), 110–117 (2011)

    Google Scholar 

  32. Svihlik, J., Fliegel, K., Kukal, J., Jehotova, E., Pata, P., et al.: Estimation of non-Gaussian noise parameters in the wavelet domain using the moment-generating function. J. Electron. Imaging. 21(2): art. no. 023025, p. 023025-1-023025-15 (2012)

  33. Svihlik, J., Pata, P.: Elimination of thermally generated charge in charged coupled devices using Bayesian estimator. Radioengineering 17(2), 119–124 (2008)

    Google Scholar 

  34. Véran, J.P., Wright, J.R.: Compression software for astronomical images. Astronomical Data Analysis Software and Systems III. 61 (1994)

  35. W. H. Press: Wavelet-Based Compression Software for FITS Images, Astronomical Data Analysis Software and Systems I. 25 (1992)

  36. White, R., Postman, M., Lattanzi, M.: Digitized Optical Sky Survey, pp. 167–175. Kluwer, Dordrecht (1992)

    Book  Google Scholar 

Download references

Acknowledgments

The work has been supported by the grant No. 14-25251S “Nonlinear imaging systems with spatially variant point spread function” of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Pata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pata, P., Schindler, J. Astronomical context coder for image compression. Exp Astron 39, 495–512 (2015). https://doi.org/10.1007/s10686-015-9460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9460-3

Keywords

Navigation