Skip to main content

Advertisement

Log in

A method for establishing a long duration, stratospheric platform for astronomical research

  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

During certain times of the year at middle and low latitudes, winds in the upper stratosphere move in nearly the opposite direction than the wind in the lower stratosphere. Here we present a method for maintaining a high-altitude balloon platform in near station-keeping mode that utilizes this stratospheric wind shear. The proposed method places a balloon-borne science platform high in the stratosphere connected by a lightweight, high-strength tether to a tug vehicle located in the lower or middle stratosphere. Using aerodynamic control surfaces, wind-induced aerodynamic forces on the tug can be manipulated to counter the wind drag acting on the higher altitude science vehicle, thus controlling the upper vehicle’s geographic location. We describe the general framework of this station-keeping method, some important properties required for the upper stratospheric science payload and lower tug platforms, and compare this station-keeping approach with the capabilities of a high altitude airship and conventional tethered aerostat approaches. We conclude by discussing the advantages of such a platform for a variety of missions with emphasis on astrophysical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aglietti, G.S.: Dynamic Response of a High-Altitude Tethered Balloon System. J. Aircr. 46(6), 2032 (2009)

    Article  Google Scholar 

  2. Akita, D.: Feasibility study of a sea-anchored stratospheric balloon for long duration flights. Adv. Space Res. 50, 50–515 (2012)

    Article  Google Scholar 

  3. Avila, R., Vernin, J., Masciadri, E.: Whole atmospheric-turbulence profiling with generalized scidar. Applied Optics LP 36(30), 7898–7905 (1997)

    Article  ADS  Google Scholar 

  4. Badesha, S.S.: SPARCL: A High Altitude Tethered Balloon-Based Optical Space-to-Ground Communication System. Proc. SPIE 4821, 181 (2002)

    Article  ADS  Google Scholar 

  5. Bahng, J.D.R., Danielson, J.B., Rogerson, J.B. Jr., Schwarzschild, M.: Sunspot photographs from the stratosphere. Astron. J. 64, 323 (1959)

    Article  ADS  Google Scholar 

  6. Bely, P.Y., Ashford, R., Cox, C.D.: High-altitude aerostats as astronomical platforms. Proc. SPIE 2478, 101–116 (1995)

    Article  ADS  Google Scholar 

  7. Bourke, E.R.: A Unique Approach to Balloon Station Keeping. Report R69-4041. Raytheon Company, Space and Information Systems Division (1969)

  8. Davey, L., Butler, R., Buchanan, B., Phillips, R.W., Lee, Y.C.: High Altitude Platform Stations for Australia. Telecommun. J. Aust. 58(2-3), 30.1-30.8 (2008)

    Google Scholar 

  9. Donas, J., Deharveng, J.M., Laget, M., Milliard, B., Huguenin, D.: Ultraviolet observations and star-formation rate in galaxies. Astron. Astrophys. 180, 12 (1987)

    ADS  Google Scholar 

  10. Dopita, M.A., Ford, H.C., Bally, J., Bely, P.: POST: A polar stratospheric telescope for the Antarctic. Publ. Astron. Soc. Aust. 13(1), 48–59 (1996)

    ADS  Google Scholar 

  11. Djuknic, G.M., Freidenfelds, J., Okunev, Y.: Establishing Wireless Communications Services via High-Altitude Aeronautical Platforms: A Concept Whose Time Has Come?. IEEE Commun. Mag., 128–135 (1997)

  12. Euler, A.J., Badesha, S.S.: Schroeder, L.D.: Very high altitude tethered balloon feasibility study. AIAA Paper AIAA-95-1612-CP (1995)

  13. Equchi, K., et al.: Feasibility study program on stratospheric platform airship technology in Japan. In: AIAA’s 13th Lighter-Than-Air Systems Technology Conference, Norfolk VA (AIAA 99-3912) (1998)

  14. Fesen, R.A.: A high-altitude station-keeping astronomical platform. In: Stepp, L. M. (ed.) Proceedings of the SPIE, Ground-based and Airborne Telescopes, vol. 6267, p ID 62670 (2006)

  15. Ford, H.C., Petro, L.D., Burrows, C., et al.: Artemis: a stratospheric planet finder. Adv. Space Res. 30, 1283 (2002)

  16. Grace, D., Daly, N.E., Tozer, T.C., Burr, A.G.: LMDS from High Altitude Aeronautical Platforms. In: Global Telecommunications Conference - Globalcom’99, p 2625 (1999)

  17. Grace, D., Thornton, J., Chen, G., White, G.P., Tozer, T.C.: Improving the System Capacity of Broadband Services Using Multiple High Altitude Platforms. IEEE Trans. Wirel. Commun. 4(2), 700 (2005)

    Article  Google Scholar 

  18. Grant, D., Rand, J.L.: Dynamic Analysis of an Ascending High Altitude Tethered Balloon System, pp. 96–0578. AIAA Paper (1996)

  19. Habib, A., Vernin, J., Benkhaldoun, Z., Lanteri, H.: Single star scidar: atmospheric parameters profiling using the simulated annealing algorithm. Mon. Not. R. Astron. Soc. 368(3), 1456–1462 (2006)

    Article  ADS  Google Scholar 

  20. Hibbitts, C.A., Young, E., Kremic, T., Landis, R.: Science measurements and instruments for a planetary science stratospheric balloon platform. In: Proceedings of the Aerospace Conference, IEEE. 2-9 March 2013. Big Sky, MT. ISBN: 978-1-4673-1812-9, id.178 (2013)

  21. Hoegemann, C.K., Chueca, S., Delgado, J.M., et al.: Cute SCIDAR: presentation of the new Canarian instrument and first observational results. In: Proc. SPIE 5490, Advancements in Adaptive Optics, p. 774 (2004). doi:10.1117/12.551795

  22. Jamison, L., Sommer, G.S., Porche, I.R.: High-Altitude Airships for the Future Force Army. Rand Corp, Technical Report, 423 (2005)

  23. Jones, W.V.: Scientific ballooning: Past, present and future. Centenary Symposium 2012: Discovery of Cosmic Rays. In: American Institute of Physics Conference Series, vol. 1516, p 229 (2013)

  24. Lee, M., Smith, S., Androulakakis, S.: The High Altitude Lighter Than Air Airship Efforts at the US Army Space and Missile Defense Command/Army Forces Strategic Command. In: 18th AIAA Lighter-Than-Air Systems Technology Conference, Seattle, Washington AIAA 2009-2852 (2009)

  25. Liao, L., Pasternal, I.: A review of airship research and development. Prog. Aerosp. Sci. 45, 83–96 (2009)

    Article  Google Scholar 

  26. Izet-Unsalan, K., Unsalan, D.: Low Cost Alternative for Satellites - Tethered Ultra High Altitude Balloons. IEEE, 13–16 (2011)

  27. Moskowitz, C.: Hubble Space Telescope Could Last Until 2018, NASA Says, http://www.space.com/19189-hubble-space-telescope-lifetime-2018.html (2013)

  28. Nichol, C.L., Guynn, M.D., Kohout, L.L., Ozoroski, T.A.: High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development. NASA/TP-2007-214861 (2007)

  29. Nock, K.T., Aaron, K.M., Heun, M.K., Pankine, A.A.: Aerodynamic and mission performance of a winged balloon guidance system. AIAA J. Aircraft 44, 1923–1938 (2007)

    Article  Google Scholar 

  30. Perotti, F., della-Ventura, A., Sechi, G., et al.: Balloon-borne observations of NGC 4151 using the MISO telescope. In: Non-solar gamma-rays; Proceedings of the Symposium, Bangalore, India, May 29-June 9, 1979. Oxford, Pergamon Press, Ltd., pp. 67–70 (1980)

  31. Platt, C.: Ethernet at 60,000 Feet. Wired Magazine, pp. 150–155 and 208–209 (1999)

  32. Regipa, R.: Captive Stratospheric Balloons, Proc. AFCRL Scinetific Balloon Symposium 30 Sept. 1974 (1974)

  33. Relekar, S., Pant, R.S.: Airships as a low cost alternative to communication satellites. In: National Conference on LTA Technologies, Aerial Delivery R&D Establishment, Agra, India (2002)

  34. Rigaut, F., Neichel, B., Boccas, M., et al.: Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration. Monthly Notices of the Royal Astronomical Society 437, 2361–2375, 437 (2014)

    Article  ADS  Google Scholar 

  35. Roberts, L.C., Bradford, L.W.: Improved models of upper-level wind for several astronomical observatories. Opt. Express 19(2) (2011)

  36. Roberts, L.C., Bryden, G., Traub, W., et al.: The Debris Disk Explorer: a balloon-borne coronagraph for observing debris disks. In: Proceedings of the SPIE, Volume 8864, ID 88640A 14 pp. (2013)

  37. Schwarzschild, M.: An Upper Limit to the Angular Diameter of the Nucleus of NGC 4151. Astrophys. J. 182, 357–362 (1973)

    Article  ADS  Google Scholar 

  38. Smith, M.S., Perry, W.D., Lew, T.M.: Development of a small stratospheric Station Keeping Balloon system. In: ISTS 2000-k-15, Proceedings, 22nd ISTS, Morioka, Japan (2000)

  39. Smith, M.S., Rainwater, E.L.: Applications of Scientific Ballooning Technology to High Altitude Airships. In: AIAA’s 3rd Annual Aviation Technology, Integration, and Operations, Denver CO, 17–19 November (2003)

  40. Smith, I.S., Fortenberry, M.L., Lee, M., Judy, R.: HiSentinel80: Flight of a High Altitude Airship. In: Presented at the 11th AIAA Aviation Aviation Technology, Integration, and Operations Conference, 19th AIAA Lighter-Than-Air, Virginia Beach, Va. (2011)

  41. Solanki, S.K., Barthol, P., Danilovic, S., et al.: SUNRISE: Instrument, Mission, Data, and First Results. The Astrophysical Journal Letters 723, L127–L133 (2010)

    Article  ADS  Google Scholar 

  42. Tozer, T.C., Grace, D.: High Altitude Platforms for Wireless Communications. IEEE Electronics and Communications Engineering Journal 13(3), 127 (2001)

    Article  Google Scholar 

  43. von Appen-Schnur, G.F.O, Luks, T.: I S L A an Astronomical World Space Observatory for The First Century of the 3 RD Millennium. Astrophys. Space Sci. 258, 301–328 (1997)

    Article  ADS  Google Scholar 

  44. von Appen-Schnur, G.F., Kueke, R., Schaefer, I., Stenvers, K.-H.: Airborne Telescope Systems. In: Melugin, R. K., Roeser, H.-P. (eds.) Proc. SPIE, vol. 4014, pp. 226–236 (2000)

  45. Welsh, B.Y., Boksenberg, A., Anderson, B., Towlson, W.A.: High resolution ultra-violet observations of alpha Lyrae using the University College London balloon-borne telescope system. Astron. Astrophys. 126, 335–340 (1983)

    ADS  Google Scholar 

  46. Wilson, R.W., Wooder, N.J., Rigal, F., Dainty, J.C.: Estimation of anisoplanatism in adaptive optics by generalized SCIDAR profiling. Mon. Not. R. Astron. Soc. 339(2), 491–494 (2003)

    Article  ADS  Google Scholar 

  47. Woolf, N.J., Schwarzschild, M., Rose, W.K.: Infrared Spectra of Red-Giant Stars. Astrophys. J. 140, 833 (1964)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge valuable advice and conversations about high-altitude LTA science platforms from participants in the W. M. Keck Institute for Space Studies (KISS) workshop entitled “Airships: A New Horizon for Science,” especially Jeff Hall, Steve Lord, Steve Smith, Mike Smith, and workshop co-leads Sarah Miller, Lynne Hillibrand, and Jason Rhodes. (Note: This paper was submitted in May 2014 with the referee’s report received in March 2015.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fesen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fesen, R., Brown, Y. A method for establishing a long duration, stratospheric platform for astronomical research. Exp Astron 39, 475–493 (2015). https://doi.org/10.1007/s10686-015-9459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9459-9

Keywords

Navigation