Skip to main content
Log in

JEM-EUSO: Meteor and nuclearite observations

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Meteor and fireball observations are key to the derivation of both the inventory and physical characterization of small solar system bodies orbiting in the vicinity of the Earth. For several decades, observation of these phenomena has only been possible via ground-based instruments. The proposed JEM-EUSO mission has the potential to become the first operational space-based platform to share this capability. In comparison to the observation of extremely energetic cosmic ray events, which is the primary objective of JEM-EUSO, meteor phenomena are very slow, since their typical speeds are of the order of a few tens of km/sec (whereas cosmic rays travel at light speed). The observing strategy developed to detect meteors may also be applied to the detection of nuclearites, which have higher velocities, a wider range of possible trajectories, but move well below the speed of light and can therefore be considered as slow events for JEM-EUSO. The possible detection of nuclearites greatly enhances the scientific rationale behind the JEM-EUSO mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The term fireball usually indicates extremely bright meteors, as will be explained below.

  2. The meteor lightcurve is the recorded variation of the meteor brightness as a function of time

References

  1. Adams, J.H. Jr., et al., (JEM-EUSO Coll.): An evaluation of the exposure in nadir observation of the JEM-EUSO mission. Astropart. Phys. 44, 76–90 (2013)

    Google Scholar 

  2. Alcock, C., Olinto, A.: Exotic phases of hadronic matter and their astrophysical application. Ann. Rev. Nucl. Part. Sci. 38, 161–184 (1988)

    Article  ADS  Google Scholar 

  3. Ambrosio, M., et al., (MACRO Coll.): Nuclearite search with the MACRO detector at Gran Sasso. Eur. Phys. J. C. 13, 453–458 (2000)

    Google Scholar 

  4. Astone, P., et al.: Upper limit for nuclearite flux from the Rome gravitational wave resonant detectors. Phys. Rev. D 47, 4770–4773 (1993)

    Article  ADS  Google Scholar 

  5. Babadzhanov, P.B., et al.: Near-Earth object 2004CK39 and its associated meteor showers. MNRAS 420, 2546–2550 (2012)

    Article  ADS  Google Scholar 

  6. Babadzhanov, P.B., et al.: Near-Earth asteroids among the Scorpiids meteoroid complex. Astron. Astrophys. 556, A25 (2013)

    Article  ADS  Google Scholar 

  7. Baudis, L.: Talk at the Neutrino 2012 conference Kyoto Japan (2012)

  8. Bertone, G., Hooper, D., Silk, J.: Particle dark matter: evidence, candidates and constraints. Phys. Rept. 405, 279–390 (2005). arXiv:[hep-ph/0404175]

    Article  ADS  Google Scholar 

  9. Blaizot, J.P., Iliopoulos, J., Madsen, J., Ross, G.G., Sonderegger, P., Specht, H.J.: CERN-2003-0001 (2003)

  10. Bland, P., et al.: The Australian desert fireball network: a new era for planetary science. Aust. J. Earth Sci. 59, 177–187 (2012)

    Article  ADS  Google Scholar 

  11. Brown, P., et al.: A 500-kT airburst over Chelyabinsk and an enhanced hazard from small impactors. Nat. 503, 238–241 (2013)

    ADS  Google Scholar 

  12. Catalano, O., et al., (JEM-EUSO Coll.): The trigger system of the JEM-EUSO telescope. In: Proceedings 31th Intenational Cosmic Ray Conference, vol. 5, pp. 1049–1052 (2009)

  13. Cecchini, S., et al., (SLIM Coll.): Results on the search for strange quark matter and Q-balls with the SLIM experiment. Eur. Phys. J. C. 57, 525–533 (2008)

    Google Scholar 

  14. Ceplecha, Z., et al.: Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998)

    Article  ADS  Google Scholar 

  15. Ceplecha, Z., et al.: Superbolides. In: Meteoroids 1998, Proceedings of the International Conference, Tatranska Lomnica, Slovakia, 17–21 August 1998. Astronomical Institute of the Slovak Academy of Sciences, p. 37 (1999)

  16. Dar, A., De Rujula, A., Heinz, U.W.: Will relativistic heavy ion colliders destroy our planet? Phys. Lett. B 470, 142–148 (1999)

    Article  ADS  Google Scholar 

  17. De Rujula, A., Glashow, S.L.: Nuclearites - a novel form of cosmic radiation. Nat. 312, 734–737 (1984)

    Article  ADS  Google Scholar 

  18. Ebisuzaki, T., et al., (JEM-EUSO Coll.): The JEM-EUSO project: observing extremely high energy cosmic rays and neutrinos from the international space station. Nucl. Phys. B (Proc. Suppl.) 175, 237–240 (2008)

    Google Scholar 

  19. Gorham, P.W.: Antiquark nuggets as dark matter: new constraints and detection prospects. Phys. Rev. D 86, 123005/1–8 (2012)

    ADS  Google Scholar 

  20. Gruen, H., et al.: Properties and interactions of interplanetary dust. In: Proceedings of the 85th Colloquium, Marseille, France, 9–12 July 1984 (A86-42326 20-90), p. 105. Reidel, Dordrecht (1985)

    Google Scholar 

  21. Han, K., et al.: Search for stable strange quark matter in lunar soil. Phys. Rev. Lett. 103, 092302 (2009)

    Article  ADS  Google Scholar 

  22. Herrin, E.T., Rosenbaum, D.C., Teplitz, V.L.: Seismic search for strange quark nuggets. Phys. Rev. D 73, 043511/1-7 (2006). arXiv:[astro-ph/0505584]

    Article  ADS  Google Scholar 

  23. Jenniskens, P., Vaubaillon, J.: Minor. Astron. J. 136, 725–730 (2008)

    Article  ADS  Google Scholar 

  24. Jenniskens, P., et al.: Almahata Sitta (=asteroid 2008 TC3) and the search for the ureilite parent body. MAPS 45, 1590–1617 (2010)

    ADS  Google Scholar 

  25. Labun, L., Birrell, J., Rafelski, J.: Compact ultra dense matter impactors. Phys. Rev. Lett. 110, 111102 (2013)

    Article  ADS  Google Scholar 

  26. Lawson, K.: Quark matter induced extensive air showers. Phys. Rev. D 83, 103520/1–9 (2011)

    Article  ADS  Google Scholar 

  27. Kajino, F., et al.: The JEM-EUSO mission to explore the extreme Universe. Nucl. Instrum. Methods A 623, 422–424 (2010)

    Article  ADS  Google Scholar 

  28. Kusenko, A., Kuzmin, V., Shaposhnikov, M.E., Tinyakov P.G.: Experimental signatures of supersymmetric dark matter Q balls. Phys. Rev. Lett. 80, 3185–3188 (1998). arXiv:[hep-ph/9712212]

    Article  ADS  Google Scholar 

  29. Rietmeijer, F. Meteorit. Planet. Sci. 35, 1025–1041 (2000)

    Article  ADS  Google Scholar 

  30. Oberst, J., et al.: The “European fireball network”: current status and future prospects. Meteorit. Planet. Sci. 33, 49–56 (1998)

    Article  ADS  Google Scholar 

  31. Ortiz, J.L., et al.: Detection of sporadic impact flashes on the Moon: implications for the luminous efficiency of hypervelocity impacts and derived terrestrial impact rates. Icarus 184, 319–326 (2006)

    Article  ADS  Google Scholar 

  32. Pavalas, G.E., et al., (ANTARES Coll.): Search for massive exotic particles with the ANTARES neutrino telescope. In: Proceedings of the 23rd European Cosmic Ray Symposium, Moscow, 543 (2012)

  33. Pecina, P.G., Koten, P.: On the theory of light curves of video-meteors. Astron. Astrophys. 499, 313–320 (2009)

    Article  MATH  ADS  Google Scholar 

  34. Price, P.B.: Limits on contribution of cosmic nuclearites to galactic dark matter. Phys. Rev. D 38, 3813–3814 (1988)

    Article  ADS  Google Scholar 

  35. Proud, S.R.: Reconstructing the orbit of the Chelyabinsk meteor using satellite observations. Geophys. Res. Lett. 40, 3351–3355 (2013)

    Article  ADS  Google Scholar 

  36. Takahashi, Y., et al.: The JEM-EUSO mission. New J. Phys. 11, 065009/1–21 (2009)

    Article  ADS  Google Scholar 

  37. Trigo-Rodriguez, J.M., et al.: The development of the Spanish fireball network using a new all-sky CCD system. Earth Moon Planet. 95, 553–567 (2004)

    Article  ADS  Google Scholar 

  38. Trigo-Rodriguez, J.M., et al.: Asteroid 2002NY40 as a source of meteorite-dropping bolides. MNRAS 382, 33–39 (2007)

    Article  Google Scholar 

  39. Trigo-Rodriguez, J.M., et al.: Determination of meteoroid orbits and spatial fluxes by using high-resolution all-sky CCD cameras. Earth Moon Planet. 102, 231–240 (2008)

    Article  ADS  Google Scholar 

  40. Weryk, R.J.: The Southern Ontario all-sky meteor camera network. Earth Moon Planet. 102, 241–246 (2008)

    Article  ADS  Google Scholar 

  41. Witten, E.: Cosmic separation of phases. Phys. Rev. D 30, 272–285 (1984)

    Article  ADS  Google Scholar 

  42. Younger, J.P., et al.: A southern hemisphere survey of meteor shower radiants and associated stream orbits using single station radar observations. MNRAS 398, 350–356 (2009)

    Article  ADS  Google Scholar 

  43. Zigo, P., et al.: The activity and mass distribution of the Geminid meteor shower of 1996-2007 from forward scatter radio observations. Contrib. Astron. Obs. Skalnaté Pleso 39, 5–17 (2009)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Italian Ministry of Foreign Affairs, General Direction for the Cultural Promotion and Cooperation. Discussions with some meteor experts, including Jiri Borowicka, Pete Jenniskens and Jeremy Vaubaillon were helpful and stimulating. The intelligent comments of two anonymous referees led also to major improvements of our original manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to M. Bertaina, A. Cellino or F. Ronga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

The JEM-EUSO Collaboration., Adams, J.H., Ahmad, S. et al. JEM-EUSO: Meteor and nuclearite observations. Exp Astron 40, 253–279 (2015). https://doi.org/10.1007/s10686-014-9375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-014-9375-4

Keywords

Navigation