Skip to main content
Log in

A hybridisation barrier between two evolutionary lineages of Barbarea vulgaris (Brassicaceae) that differ in biotic resistances

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Hybridisation barriers are likely to evolve during allopatric separation of populations, in parallel with divergent adaptation to different conditions in the two ranges. If the populations secondarily come into contact, limited interbreeding between them may affect the subsequent spread of the two lineages and their adaptations in the region of sympatry. Barbarea vulgaris include two genetically divergent lineages that differ in secondary metabolites and resistances to insects and a pathogen. The two plant types grow in different Eurasian ranges but co-occur in Denmark and neighbouring countries, posing the question why they have not merged and the resistances spread from one type into the range of the other. Here, we tested whether a hybridisation barrier contribute to this. Different proportions of plants of the two types were placed in net tents and pollinated by flies, and paternity of the resulting seeds determined with genetic markers. Lower proportions of fruits and seeds developed successfully in mixtures with higher proportions of heterotypic plants (i.e. of the other plant type). When combined with results on offspring paternity in a statistical analysis, we found that heterotypic pollen was much less successful in fertilizing embryos and that heterotypic seeds survived less frequently than the contypic. Mature F1 hybrids in addition produced lower proportions of mature pollen. The two B. vulgaris plant types are thus separated by substantial prezygotic and postzygotic barriers, as strong as reported for crosses between closely related but taxonomically recognised plant species. This may explain why the two B. vulgaris types have not merged in sympatry and why genes for insect-resistance have not introgressed to any extent from one to the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agerbirk N, Olsen C, Bibby B et al (2003a) A saponin correlated with variable resistance of Barbarea vulgaris to the diamondback moth Plutella xylostella. J Chem Ecol 29:1417–1433

    Article  CAS  PubMed  Google Scholar 

  • Agerbirk N, Ørgaard M, Nielsen JK (2003b) Glucosinolates, flea beetle resistance, and leaf pubescence as taxonomic characters in the genus Barbarea (Brassicaceae). Phytochemistry 63:69–80

    Article  CAS  PubMed  Google Scholar 

  • Aldridge G, Campbell DR (2006) Asymmetrical pollen success in Ipomopsis (Polemoniaceae) contact sites. Am J Bot 93:903–909

    Article  PubMed  Google Scholar 

  • Allmon W (1991) A causal analysis of stages in allopatric speciation. Oxf Surv Evol Biol 8:219–257

    Google Scholar 

  • Al-Shehbaz IA (1988) The genera of Arabideae (Cruciferae; Brassicaceae) in the South eastern United States. J Arnold Arbor 69:85–166

    Article  Google Scholar 

  • Arnold ML (1997) Natural hybridisation and evolution. Oxford University Press, New York

    Google Scholar 

  • Augustin JM, Drok S, Shinoda T et al (2012) UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol 160:1881–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baack E, Melo MC, Rieseberg LH et al (2015) The origins of reproductive isolation in plants. New Phytol 207:968–984

    Article  PubMed  Google Scholar 

  • Bac-Molenaar JA, Fradin EF, Becker FFM et al (2015) Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. Plant Cell 27:1857–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badenes-Perez FR, Gershenzon J, Heckel DG (2014) Insect attraction versus plant defense: young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content. PLoS ONE 9:e95766. doi:10.1371/journal.pone.0095766

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    Article  CAS  PubMed  Google Scholar 

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148

    Article  Google Scholar 

  • Bernhardsson C, Robinson KM, Abreu IN et al (2013) Geographic structure in metabolome and herbivore community co-occurs with genetic structure in plant defence genes. Ecol Lett 16:791–798

    Article  PubMed  Google Scholar 

  • Bushell C, Spielman M, Scott RJ (2003) The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species. Plant Cell 15:1430–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carney SE, Cruzan MB, Arnold ML (1994) Reproductive interactions betwen hybridizing irises: analyses of pollen-tube growth and fertilization success. Am J Bot 81:1169–1175

    Article  Google Scholar 

  • Chapman MA, Forbes DG, Abbott RJ (2005) Pollen competition among two species of Senecio (Asteraceae) that form a hybrid zone on Mt. Etna, Sicily. Am J Bot 92:730–735

    Article  PubMed  Google Scholar 

  • Christensen S, Heimes C, Agerbirk N et al (2014) Different geographical distributions of two chemotypes of Barbarea vulgaris that differ in resistance to insects and a pathogen. J Chem Ecol 40:491–501

    Article  CAS  PubMed  Google Scholar 

  • Cruzan MB, Arnold ML (1994) Assortative mating and natural selection in an Iris hybrid zone. Evolution 48:1946–1958

    Article  Google Scholar 

  • De Carvalho D, Ingvarsson PK, Joseph J et al (2010) Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree. Mol Ecol 19:1638–1650

    Article  Google Scholar 

  • Dell’Olivo A, Hoballah ME, Gübitz T et al (2011) Isolation barriers between Petunia axillaris and Petunia integrifolia (Solanaceae). Evolution 65:1979–1991

    Article  PubMed  Google Scholar 

  • e Silva JC, Potts BM, Tilyard P (2012) Epistasis causes outbreeding depression in eucalypt hybrids. Tree Genet Genomes 8:249–265

    Article  Google Scholar 

  • Edmands S (2002) Does parental divergence predict reproductive compatibility? Trends Ecol Evol 17:520–527

    Article  Google Scholar 

  • Fitzpatrick BM, Fordyce JA, Gavrilets S (2008) What, if anything, is sympatric speciation? J Evol Biol 21:1452–1459

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen S, Rasmussen FN, Seberg O (eds) (2012) Dansk flora. Gyldendal, Copenhagen

    Google Scholar 

  • Fuchs MCP, de Sousa SM, Sanmartin-Gajardo I et al (2011) Chromosome number in meiotic stage cells and pollen viability of Vanhouttea hilariana Chautems, Vanhouttea brueggeri Chautems and an interespecific hybrid (Gesneriaceae). An Biol 33:35–40

    Google Scholar 

  • Gueritaine G, Bonavent JF, Darmency H (2003) Variation of prezygotic barriers in the interspecific hybridization between oilseed rape and wild radish. Euphytica 130:349–353

    Article  CAS  Google Scholar 

  • Hauser TP, Jørgensen RB (1998) Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity 81:436–443

    Article  Google Scholar 

  • Hauser TP, Jorgensen RB, Ostergard H (1997) Preferential exclusion of hybrids in mixed pollinations between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae). Am J Bot 84:756–762

    Article  CAS  PubMed  Google Scholar 

  • Hauser TP, Bohr MB, Dienst DN et al (2012a) Hybridization between Pyrola grandiflora and Pyrola minor in West Greenland: a tension zone maintained by clonality. Botany 90:1036–1047

    Article  Google Scholar 

  • Hauser TP, Toneatto F, Nielsen JK (2012b) Genetic and geographic structure of an insect resistant and a susceptible type of Barbarea vulgaris in western Europe. Evol Ecol 26:611–624

    Article  Google Scholar 

  • Heimes C, Thiele J, van Mölken T et al (2015) Interactive impacts of a herbivore and a pathogen on two resistance types of Barbarea vulgaris (Brassicaceae). Oecologia 177:441–452

    Article  PubMed  Google Scholar 

  • Hewitt GM (1988) Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki S, Abe T, Ohara M (2013) Mechanisms of reproductive isolation of interspecific hybridization between Trillium camschatcense and T. tschonoskii (Melanthiaceae). Plant Species Biol 28:204–214

    Article  Google Scholar 

  • Khatun S, Flowers TJ (1995) The estimation of pollen viability in rice. J Exp Bot 46:151–154

    Article  CAS  Google Scholar 

  • Klips RA (1999) Pollen competition as a reproductive isolating mechanism between two sympatric Hibiscus species (Malvaceae). Am J Bot 86:269–272

    Article  CAS  PubMed  Google Scholar 

  • Kuzina V, Ekstrom CT, Andersen SB et al (2009) Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach. Plant Physiol 151:1977–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzina V, Nielsen JK, Augustin JM et al (2011) Barbarea vulgaris linkage map and quantitative trait loci for saponins, glucosinolates, hairiness and resistance to the herbivore Phyllotreta nemorum. Phytochemistry 72:188–198

    Article  CAS  PubMed  Google Scholar 

  • Lafon-Placette C, Köhler C (2016) Endosperm-based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers. Mol Ecol 25:2620–2629

    Article  PubMed  Google Scholar 

  • Lindtke D, Gompert Z, Lexer C et al (2014) Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species. Mol Ecol 23:4316–4330

    Article  PubMed  Google Scholar 

  • Lowry DB, Modliszewski JL, Wright KM et al (2008) The strength and genetic basis of reproductive isolating barriers in flowering plants. Philos Trans R Soc Lond B Biol Sci 363:3009–3021

    Article  PubMed  PubMed Central  Google Scholar 

  • Luca A, Palermo A, Bellusci F et al (2015) Pollen competition between two sympatric Orchis species (Orchidaceae): the overtaking of conspecific of heterospecific pollen as a reproductive barrier. Plant Biol 17:219–225

    Article  CAS  PubMed  Google Scholar 

  • Ma Y-P, Xie W-J, Sun W-B et al (2016) Strong reproductive isolation despite occasional hybridization between a widely distributed and a narrow endemic Rhododendron species. Sci Rep 6:19146. doi:10.1038/srep19146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Martin NH, Willis JH (2007) Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution 61:68–82

    Article  PubMed  Google Scholar 

  • Montgomery BR, Soper DM, Delph LF (2010) Asymmetrical conspecific seed-siring advantage between Silene latifolia and S. dioica. Ann Bot 105:595–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Mossberg B, Stenberg L (2003) Den nye nordiske flora. Gyldendal, Nordisk Forlag, København

    Google Scholar 

  • Nielsen JK (1997) Variation in defences of the plant Barbarea vulgaris and in counteradaptations by the flea beetle Phyllotreta nemorum. Entomol Exp Appl 82:25–35

    Article  Google Scholar 

  • Nielsen JK, Nagao T, Okabe H et al (2010) Resistance in the plant, Barbarea vulgaris, and counter-adaptations in flea beetles mediated by saponins. J Chem Ecol 36:277–285

    Article  CAS  PubMed  Google Scholar 

  • Nista P, Brothers AN, Delph LF (2015) Differences in style length confer prezygotic isolation between two dioecious species of Silene in sympatry. Ecol Evol 5:2703–2711

    Article  PubMed  PubMed Central  Google Scholar 

  • Norton JD (1966) Testing of plum pollen viability with tetrazolium salts. Proc Am Soc Hortic Sci 89:132–134

    Google Scholar 

  • Oneal E, Willis JH, Franks RG (2016) Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus. New Phytol 210:1107–1120

    Article  PubMed  Google Scholar 

  • Price DT, Rich TCG (2007) One-way introgressive hybridisation between Sorbus aria and S. torminalis (Rosaceae) in southern Britain. Watsonia 26:419–432

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rahme J, Widmer A, Karrenberg S (2009) Pollen competition as an asymmetric reproductive barrier between two closely related Silene species. J Evol Biol 22:1937–1943

    Article  CAS  PubMed  Google Scholar 

  • Ramsey J, Bradshaw HD, Schemske DW (2003) Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–1534

    Article  PubMed  Google Scholar 

  • Rebernig CA, Lafon-Placette C, Hatorangan MR et al (2015) Non-reciprocal interspecies hybridization barriers in the Capsella genus are established in the endosperm. PLoS Genet 11:e1005295

    Article  PubMed  PubMed Central  Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42

    Article  CAS  Google Scholar 

  • Rich T (1987) The genus Barbarea R. Br. (Cruciferae) in Britain and Ireland. Watsonia 16:389–396

    Google Scholar 

  • Rieseberg LH (2000) Crossing relationships among ancient and experimental sunflower hybrid lineages. Evolution 54:859–865

    Article  CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA et al (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambatti J, Strasburg JL, Ortiz-Barrientos D et al (2012) Reconciling extremely strong barriers with high levels of gene exchange in annual sunflowers. Evolution 66:1459–1473

    Article  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Scopece G, Croce A, Lexer C et al (2013) Components of reproductive isolation between Orchis mascula and Orchis pauciflora. Evolution 67:2083–2093

    Article  PubMed  Google Scholar 

  • Shinoda T, Nagao T, Nakayama M et al (2002) Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. J Chem Ecol 28:587–599

    Article  CAS  PubMed  Google Scholar 

  • Soltis P (2013) Hybridization, speciation and novelty. J Evol Biol 26:291–293

    Article  CAS  PubMed  Google Scholar 

  • Swanson RJ, Hammond AT, Carlson AL et al (2016) Pollen performance traits reveal prezygotic nonrandom mating and interference competition in Arabidopsis thaliana. Am J Bot 103:498–513

    Article  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Toneatto F, Nielsen JK, Ørgaard M et al (2010) Genetic and sexual separation between insect resistant and susceptible Barbarea vulgaris plants in Denmark. Mol Ecol 19:3456–3465

    Article  CAS  PubMed  Google Scholar 

  • van Mölken T, Kuzina V, Munk KR et al (2014) Consequences of combined herbivore feeding and pathogen infection for fitness of Barbarea vulgaris plants. Oecologia 175:589–600

    Article  PubMed  Google Scholar 

  • Walsh NE, Charlesworth D (1992) Evolutionary interpretations of differences in pollen tube growth rates. Q Rev Biol 67:19–37

    Article  Google Scholar 

  • Whitehead MR, Peakall R (2014) Pollinator specificity drives strong prepollination reproductive isolation in sympatric sexually deceptive orchids. Evolution 68:1561–1575

    Article  PubMed  Google Scholar 

  • Widmer A, Lexer C, Cozzolino S (2009) Evolution of reproductive isolation in plants. Heredity 102:31–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Gardeners Mai-Britt Sauer, Kurt Dahl and Theo Bolsterli are sincerely thanked for help with setting up and maintaining experimental plants in the greenhouse, and Vinnie Deichmann for help with DNA extractions. This work was carried out as part of SC’s Ph.D. project, funded by the Faculty of Science, University of Copenhagen, and by a grant from the The Danish Council for Independent Research, Technology and Production Sciences to TH (No 09-065899).

Author’s contribution

T.P.H. and S.C. planned the experiments and wrote the manuscript. S.C. did the pollination experiments and analysed part of the data, K.R.M. analysed pollen viability. T.P.H. and H.S. developed the theoretical framework for the statistical fitness model, H.S. analysed the model with input from T.P.H. and S.C. All authors contributed to editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thure Pavlo Hauser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, S., Sørensen, H., Munk, K.R. et al. A hybridisation barrier between two evolutionary lineages of Barbarea vulgaris (Brassicaceae) that differ in biotic resistances. Evol Ecol 30, 887–904 (2016). https://doi.org/10.1007/s10682-016-9858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9858-z

Keywords

Navigation