Skip to main content
Log in

Hoverflies are imperfect mimics of wasp colouration

  • Evolutionary Ecology Natural History
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Many Batesian mimics are considered to be inaccurate copies of their models, including a number of hoverfly species which appear to be poor mimics of bees and wasps. This inaccuracy is surprising since more similar mimics are expected to deceive predators more frequently and therefore have greater survival. One suggested explanation is that mimics which appear inaccurate to human eyes may be perceived differently by birds, the probable agents of selection. For example, if patterns contain an ultra-violet (UV) component, this would be visible to birds but overlooked by humans. So far, indirect comparisons have been made using human and bird responses to mimetic stimuli, but direct colour measurements of mimetic hoverflies are lacking. We took spectral readings from a wide range of hoverfly and wasp patterns. They show very low reflectance in the UV range, and do not display any human-invisible colour boundaries. We modelled how the recorded spectra would be perceived by both birds and humans. While colour differences between wasps and hoverflies are slightly more distinct according to human visual abilities, bird vision is capable of discriminating the two taxa in almost all cases. We discuss a number of factors that might make the discrimination task more challenging for a predator in the field, which could explain the apparent lack of selection for accurate colour mimicry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson MB (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Andersson S, Örnborg J, Andersson M (1998) Ultraviolet sexual dimorphism and assortative mating in blue tits. Proc R Soc Lond B 265(1395):445–450

    Article  Google Scholar 

  • Aronsson M, Gamberale-Stille G (2012) Colour and pattern similarity in mimicry: evidence for a hierarchical discriminative learning of different components. Anim Behav 84(4):881–887

    Article  Google Scholar 

  • Aronsson M, Gamberale-Stille G (2013) Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav Ecol 24(2):349–354

    Article  Google Scholar 

  • Azmeh S, Owen J, Sørensen K, Grewcock D, Gilbert F (1998) Mimicry profiles are affected by human-induced habitat changes. Proc R Soc Lond B 265(1412):2285–2290

    Article  CAS  Google Scholar 

  • Bain RS, Rashed A, Cowper VJ, Gilbert FS, Sherratt TN (2007) The key mimetic features of hoverflies through avian eyes. Proc R Soc Lond B 274(1621):1949–1954

    Article  Google Scholar 

  • Bates HW (1862) XXXII. Contributions to an insect fauna of the amazon valley. Lepidoptera: Heliconidæ. Trans Linn Soc Lond 23(3):495–566

    Article  Google Scholar 

  • Birkhead TR (1974) Predation by birds on social wasps. Br Birds 67(6):221–229

    Google Scholar 

  • Burr D (1980) Motion smear. Nature 284(5752):164–165

    Article  CAS  PubMed  Google Scholar 

  • Chen DM, Goldsmith TH (1986) Four spectral classes of cone in the retinas of birds. J Comp Physiol A 159(4):473–479

    Article  CAS  PubMed  Google Scholar 

  • Cheney KL, Marshall NJ (2009) Mimicry in coral reef fish: how accurate is this deception in terms of color and luminance? Behav Ecol 20(3):459–468

    Article  Google Scholar 

  • Cuthill IC, Bennett ATD (1993) Mimicry and the eye of the beholder. Proc R Soc Lond B 253(1337):203–204

    Article  Google Scholar 

  • Dittrich W, Gilbert F, Green P, Mcgregor P, Grewcock D (1993) Imperfect mimicry: a pigeon’s perspective. Proc R Soc Lond B 251(1332):195–200

    Article  Google Scholar 

  • Dlusski G (1984) Are dipteran insects protected by their similarity to stinging Hymenoptera? Byull Mosk O-Va Ispyt Prir Otd Biol 89:25–40

    Google Scholar 

  • Donner KO (1951) The visual acuity of some passerine birds. Acta Zool Fenn 66:1–40

    Google Scholar 

  • Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191(6):547–557

    Article  Google Scholar 

  • Edmunds M (2000) Why are there good and poor mimics? Biol J Linn Soc 70(3):459–466

    Article  Google Scholar 

  • Endler JA (1990) On the measurement and classification of colour in studies of animal colour patterns. Biol J Linn Soc 41(4):315–352

    Article  Google Scholar 

  • Endler JA (1993) The color of light in forests and its implications. Ecol Monogr 63(1):2–27

    Article  Google Scholar 

  • Endler JA, Mielke PWJ (2005) Comparing entire colour patterns as birds see them. Biol J Linn Soc 86:405–431

    Article  Google Scholar 

  • Feeney WE, Stoddard MC, Kilner RM, Langmore NE (2014) “Jack-of-all-trades” egg mimicry in the brood parasitic Horsfield’s bronze-cuckoo? Behav Ecol 25(6):1365–1373

    Article  Google Scholar 

  • Getty T (1985) Discriminability and the sigmoid functional response: how optimal foragers could stabilize model-mimic complexes. Am Nat 125(2):239–256

    Article  Google Scholar 

  • Ghim MM, Hodos W (2006) Spatial contrast sensitivity of birds. J Comp Physiol A 192(5):523–534

    Article  Google Scholar 

  • Gilbert F (2005) The evolution of imperfect mimicry. In: Fellowes M, Holloway G, Rolff J (eds) Insect evolutionary ecology. CABI, Wallingford, pp 231–288

    Google Scholar 

  • Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180(3):235–243

    Article  Google Scholar 

  • Golding YC, Edmunds M, Ennos AR (2005) Flight behaviour during foraging of the social wasp Vespula vulgaris (Hymenoptera: Vespidae) and four mimetic hoverflies (Diptera: Syrphidae) Sericomyia silentis, Myathropa florea, Helophilus sp. and Syrphus sp. J Exp Biol 208(23):4523–4527

    Article  CAS  PubMed  Google Scholar 

  • Green PR, Gentle L, Peake TM, Scudamore RE, McGregor PK, Gilbert F, Dittrich WH (1999) Conditioning pigeons to discriminate naturally lit insect specimens. Behav Processes 46(1):97–102

    Article  CAS  PubMed  Google Scholar 

  • Holloway G, Gilbert F, Brandt A (2002) The relationship between mimetic imperfection and phenotypic variation in insect colour patterns. Proc R Soc Lond B 269(1489):411–416

    Article  Google Scholar 

  • Jones RT, Poul YL, Whibley AC, Mérot C, ffrench-Constant RH, Joron M (2013) Wing shape variation associated with mimicry in butterflies. Evolution 67(8):2323–2334

    Article  PubMed  Google Scholar 

  • Kazemi B, Gamberale-Stille G, Tullberg Birgitta S, Leimar O (2014) Stimulus salience as an explanation for imperfect mimicry. Curr Biol 24(9):965–969

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi DW, Pfennig DW (2013) Imperfect mimicry and the limits of natural selection. Q Rev Biol 88(4):297–315

    Article  PubMed  Google Scholar 

  • Kikuchi DW, Sherratt TN (2015) Costs of learning and the evolution of mimetic signals. Am Nat 186(3):321–332

    Article  PubMed  Google Scholar 

  • Kraemer AC, Adams DC (2014) Predator perception of Batesian mimicry and conspicuousness in a salamander. Evolution 68(4):1197–1206

    Article  PubMed  Google Scholar 

  • Limeri LB, Morehouse NI (2014) Sensory limitations and the maintenance of colour polymorphisms: viewing the ‘alba’ female polymorphism through the visual system of male Colias butterflies. Funct Ecol 28(5):1197–1207

    Article  Google Scholar 

  • Lindström L, Alatalo RV, Mappes J (1997) Imperfect Batesian mimicry—the effects of the frequency and the distastefulness of the model. Proc R Soc Lond B 264(1379):149–153

    Article  Google Scholar 

  • Llaurens V, Joron M, Théry M (2014) Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours? J Evol Biol 27(3):531–540

    Article  CAS  PubMed  Google Scholar 

  • Maia R, Eliason CM, Bitton P-P, Doucet SM, Shawkey MD (2013) pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol Evol 4(10):906–913

    Google Scholar 

  • Marples NM, van Veelen W, Brakefield PM (1994) The relative importance of colour, taste and smell in the protection of an aposematic insect Coccinella septempunctata. Anim Behav 48(4):967–974

    Article  Google Scholar 

  • Morrell GM, Turner JRG (1970) Experiments on mimicry: I. The response of wild birds to artificial prey. Behaviour 36(1/2):116–130

    Article  Google Scholar 

  • Mostler G (1935) Beobachtungen zur frage der wespenmimikry (Observations on the question of wasp mimicry). Zoomorphology 29(3):381–454

    Google Scholar 

  • Ödeen A, Håstad O (2003) Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20(6):855–861

    Article  PubMed  Google Scholar 

  • Olsson P, Lind O, Kelber A (2015) Bird colour vision: behavioural thresholds reveal receptor noise. J Exp Biol 218(2):184–193

    Article  PubMed  Google Scholar 

  • Osorio D, Miklósi A, Gonda Z (1999) Visual ecology and perception of coloration patterns by domestic chicks. Evol Ecol 13(7–8):673–689

    Article  Google Scholar 

  • Penney HD, Hassall C, Skevington JH, Abbott KR, Sherratt TN (2012) A comparative analysis of the evolution of imperfect mimicry. Nature 483(7390):461–464

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Richards OW (1980) Scolioidea, vespoidea and sphecoidea; hymenoptera, aculeata. Royal Entomological Society of London, London

    Google Scholar 

  • Richards-Zawacki CL, Yeager J, Bart HPS (2013) No evidence for differential survival or predation between sympatric color morphs of an aposematic poison frog. Evol Ecol 27(4):783–795

    Article  Google Scholar 

  • Rotheray GF, Gilbert F (2011) The natural history of hoverflies. Forrest Text, Cardigan

    Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, Oxford

    Book  Google Scholar 

  • Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K (2004) Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol 207(14):2471–2485

    Article  PubMed  Google Scholar 

  • Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40(13):1711–1737

    Article  CAS  PubMed  Google Scholar 

  • Stubbs AE, Falk SJ (2002) British hoverflies: an illustrated identification guide. British Entomological and Natural History Society, Reading

    Google Scholar 

  • Svádová K, Exnerová A, Štys P, Landová E, Valenta J, Fučíková A, Socha R (2009) Role of different colours of aposematic insects in learning, memory and generalization of naïve bird predators. Anim Behav 77(2):327–336

    Article  Google Scholar 

  • Veselý P, Luhanová D, Prášková M, Fuchs R (2013) Generalization of mimics imperfect in colour patterns: the point of view of wild avian predators. Ethology 119(2):138–145

    Article  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B 265(1394):351–358

    Article  CAS  Google Scholar 

  • Waldbauer G (1988) Asynchrony between Batesian mimics and their models. Am Nat 131:S103–S121

    Article  Google Scholar 

  • Wyszecki G, Stiles WS (2000) Color science: concepts and methods, quantitative data and formulae. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

We would like to thank John Endler for advice on spectrophotometry methods, Mark Strickland for manufacture of our custom probe-cover, and two anonymous reviewers for invaluable comments on our manuscript. This research was partly funded by a small equipment grant from the University of Nottingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. Taylor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, C.H., Reader, T. & Gilbert, F. Hoverflies are imperfect mimics of wasp colouration. Evol Ecol 30, 567–581 (2016). https://doi.org/10.1007/s10682-016-9824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9824-9

Keywords

Navigation