Skip to main content
Log in

Seasonal sex ratios and the evolution of temperature-dependent sex determination in oviparous lizards

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Although the adaptive significance of temperature-dependent sex determination (TSD) remains a puzzle, recent models implicate a seasonal bias in offspring sex production that translates into sex-specific fitness benefits later in life. Sex-specific emergence has been linked to fitness gains in some fish, birds and reptiles, but field data supporting the occurrence of a seasonal pattern of sex ratios in oviparous lizards are lacking. We tested the hypothesis that patterns of nest site selection and seasonal temperature changes combine to inhibit the materialization of sex-biased hatching times in a population of water dragons (Intellagama lesueurii). As predicted, a seasonal increase in air and nest temperatures resulted in a sex bias by nesting date; male-producing clutches were laid 17.8 days sooner than female-producing clutches, on average. However, the seasonal ramping of nest temperatures also caused shorter relative incubation periods in the later, all-female clutches. As a consequence of this developmental ‘catch-up’, the mean hatching date for male-producing nests preceded the mean hatching date for female-producing nests by only 7.2 days. We suggest that a contracted distribution of hatching dates compared to the distribution of oviposition dates represents a general pattern for oviparous reptiles in seasonal climates, which in TSD species may largely offset the temporal disparity in nesting dates between the sexes. Although data are needed for other TSD species, such minor age differences between male and female hatchlings may not translate into fitness differences later in life, an assumption of some models for the evolution and maintenance of TSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson M, Wallander J, Oring L, Akst E, Reed JM, Fleischer RC (2003) Adaptive seasonal trend in brood sex ratio: test in two sister species with contrasting breeding systems. J Evol Biol 16(3):510–515

    Article  CAS  PubMed  Google Scholar 

  • Badyaev AV, Schwabl H, Young RL, Duckworth RA, Navara KJ, Parlow AF (2005) Adaptive sex differences in growth of pre-ovulation oocytes in a passerine bird. Proc R Soc B Biol Sci 272(1577):2165–2172

    Article  Google Scholar 

  • Badyaev AV, Acevedo ED, Navara KJ, Hill GE, Mendonca MT (2006a) Evolution of sex-biased maternal effects in birds: III. Adjustment of ovulation order can enable sex-specific allocation of hormones, carotenoids, and vitamins. J Evol Biol 19(4):1044–1057

    Article  CAS  PubMed  Google Scholar 

  • Badyaev AV, Oh KP, Mui R (2006b) Evolution of sex-biased maternal effects in birds: II. Contrasting sex-specific oocyte clustering in native and recently established populations. J Evol Biol 19(3):909–921

    Article  CAS  PubMed  Google Scholar 

  • Badyaev AV, Young RL, Hill GE, Duckworth RA (2008) Evolution of sex-biased maternal effects in birds. IV. Intra-ovarian growth dynamics can link sex determination and sex-specific acquisition of resources. J Evol Biol 21(2):449–460

    Article  CAS  PubMed  Google Scholar 

  • Bull JJ (1980) Sex determination in reptiles. Q Rev Biol 55:3–21

    Article  Google Scholar 

  • Bull JJ (1981) Sex ratio evolution when fitness varies. Heredity 46:9–26

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton New Jersey

    Google Scholar 

  • Charnov E, Bull J (1977) When is sex environmentally determined? Nature 266:828–830

    Article  CAS  PubMed  Google Scholar 

  • Cogger HG (2000) Reptiles and amphibians of Australia, 6th edn. Reed New Holand, Sydney

    Google Scholar 

  • Conover DO (1984) Adaptive significance of temperature-dependent sex determination in a fish. Am Nat 123:297–313

    Article  Google Scholar 

  • Conover DO, Heins SW (1987) The environmental and genetic components of sex ratio in Menidia menidia (Pisces: Atherinidae). Copeia 1987(3):732–743

    Article  Google Scholar 

  • Daan S, Dijkstra C, Weissing F (1996) An evolutionary explanation for seasonal trends in avian sex ratios. Behav Ecol 7:426–430

    Article  Google Scholar 

  • Daly G (1992) Aggressive territorial behaviour in free range water dragons (Physignathus lesueurii lesueurii). Herpetofauna 21(22):37

    Google Scholar 

  • de Souza RR, Vogt RC (1994) Incubation temperature influences sex and hatchling size in the neotropical turtle Podocnemis unifilis. J Herpetol 28(4):453

    Article  Google Scholar 

  • Deeming DC (2004) Reptilian incubation: environment, evolution and behaviour. Nottingham University Press, Nottingham

    Google Scholar 

  • Doody, J. S. (1995). A comparative nesting study of two syntopic species of softshell turtles (Apalone mutica and Apalone spinifera) in Southeastern Louisiana (unpublished Masters thesis) Southern Luisiana University

  • Doody JS, Georges A, Young JE (2004) Determinants of reproductive success and offspring sex in a turtle with environmental sex determination. Biol J Linn Soc 81:1–16

    Article  Google Scholar 

  • Doody J, Guarino E, Georges A, Corey B, Murray G, Ewert M (2006) Nest site choice compensates for climate effects on sex ratios in a lizard with environmental sex determination. Evol Ecol 20(4):307–330

    Article  Google Scholar 

  • Dufaure JP, Hubert J (1961) Table De Developpement Du Lezard Vivipare-Lacerta (Zootoca) Vivipara Jacquin. Arch Anat Microsc Morphol Exp 50:309–328

    Google Scholar 

  • Ewert MA, Jackson DR, Nelson CE (1994) Patterns of temperature-dependent sex determination in turtles. J Exp Zool 270:3–15

    Article  Google Scholar 

  • Frank SA (1990) Sex allocation theory for birds and mammals. Annu Rev Ecol Syst 21(1):13–55

    Article  Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap light analyser (GLA): imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, British Columbia; and the Institute of Ecosystem Studies, New York

  • Georges A (1989) Female turtles from hot nests: is it duration of incubation or proportion of development at high temperatures that matters? Oecologia 81(3):323–328

    Article  Google Scholar 

  • Georges A, Beggs K, Young JE, Doody JS (2005) Modelling development of reptile embryos under fluctuating temperature regimes. Physiol Biochem Zool 78(1):18–30

    Article  PubMed  Google Scholar 

  • Harlow P (1996) A harmless technique for sexing hatchling lizards. Herpetol Rev 27:71–72

    Google Scholar 

  • Harlow PS (2001) The ecology of sex-determining mechanisms in Australian agamid lizards (unpublished Ph.d. thesis) Maquarie University

  • Harlow P (2004) Temperature-dependent sex determination in lizards. In: Valenzuela N, Lance V (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, p 42

    Google Scholar 

  • Harlow P, Harlow M (1997) Captive reproduction and longevity in the eastern water dragon (Physignathus Lesueurii). Herpetofauna 27:14–19

    Google Scholar 

  • Harlow PS, Taylor JE (2000) Reproductive ecology of the jacky dragon (Amphibolurus muricatus): an agamid lizard with temperature-dependent sex determination. Austral Ecol 25:640–652

    Article  Google Scholar 

  • Komdeur J, Pen I (2002) Adaptive sex allocation in birds: the complexities of linking theory and practice. Philos Trans R Soc B Biol Sci 357:373–380

    Article  Google Scholar 

  • Komdeur J, Magrath MJL, Krackow S (2002) Pre-ovulation control of hatchling sex ratio in the Seychelles warbler. Proc R Soc B Biol Sci 269:1067–1072

    Article  Google Scholar 

  • Korpelainen H (1990) Sex ratios and conditions required for environmental sex determination in animals. Biol Rev 65(2):147–184

    Article  CAS  PubMed  Google Scholar 

  • Pen I, Uller T, Feldmeyer B, Harts A, While GM, Wapstra E (2010) Climate-driven population divergence in sex-determining systems. Nature 468(7322):436–438

    Article  CAS  PubMed  Google Scholar 

  • Radder RS, Warner DA, Shine R (2007) Compensating for a bad start: catch-up growth in juvenile lizards (Amphibolurus muricatus, Agamidae). J Exp Zool 307A(9):500–508

    Article  Google Scholar 

  • Thompson MB (1990) Incubation of eggs of tuatara, Sphenodon punctatus. J Zool 222(2):303–318

    Article  Google Scholar 

  • Thompson M (1993) Estimate of the population structure of the estern water dragon, Physignathus lesueurii (Reptilia: Agamidae), along riverside habitat. Wildl Res 20:613–619

    Article  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179(4068):90–92

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela N, Botero R, Martínez E (1997) Field study of sex determination in Podocnemis expansa from Colombian Amazonia. Herpetologica 53(3):390–398

    Google Scholar 

  • Vitt LJ, Caldwell JP (2013) Reproduction and life histories. In: Vitt LJ, Caldwell JP (eds) Herpetology: an introductory biology of amphibians and reptiles. Academic Press, New York, pp 117–175

    Google Scholar 

  • Warner DA, Shine R (2005) The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard. Evolution 59:2209

    Article  PubMed  Google Scholar 

  • Warner DA, Shine R (2008) The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451:566–568

    Article  CAS  PubMed  Google Scholar 

  • Warner DA, Shine R (2011) Interactions among thermal parameters determine offspring sex under temperature-dependent sex determination. Proc R Soc B Biol Sci 278:256–265

    Article  Google Scholar 

  • Warner DA, Uller T, Shine R (2009) Fitness effects of the timing of hatching may drive the evolution of temperature-dependent sex determination in short-lived lizards. Evol Ecol 23:281–294

    Article  Google Scholar 

  • Yamahira K, Conover DO (2003) Interpopulation variability in temperature-dependent sex determination of the Tidewater Silverside Menidia peninsulae. Copeia 2003:155–159

    Article  Google Scholar 

Download references

Acknowledgments

The research was aided by funding from the ACT Society of Herpetologists, the Australian Society of Herpetologists, the Peter Rankin Trust Fund for Herpetology and the Wildlife Preservation Society of Australia. NP was supported by a University of Sydney Postgraduate Award. We thank the Australian National Botanic Gardens for facilitating and supporting the study, Jacquie F. Herbert for assistance with incubations and Arthur Georges for use of incubators and facilities at the Institute for Applied Ecology (University of Canberra).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pezaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezaro, N., Thompson, M.B. & Doody, J.S. Seasonal sex ratios and the evolution of temperature-dependent sex determination in oviparous lizards. Evol Ecol 30, 551–565 (2016). https://doi.org/10.1007/s10682-016-9820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9820-0

Keywords

Navigation