Skip to main content

Advertisement

Log in

Species interactions during diversification and community assembly in Malagasy Miniopterus bats

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The habitat first rule (HFR) proposes that radiating species initially diversify into habitat specialists and later into dietary specialists within a given habitat, whereas the general vertebrate model (GVM) adds divergence of sexually selected traits as a possible third axis of specialization subsequent to habitat and dietary divergence. In this study, using 12 Miniopterus spp. from Madagascar we test predictions of the HFR and GVM from ecological and evolutionary perspectives on Grinnellian and Eltonian niche structures. We used environmental niche models (ENMs) to quantify the Grinnellian niche, both for current and last inter-glacial climates. We used null models to examine Eltonian niche patterns of sympatric species in terms of their phylogenetic relatedness and phenotypic and sensory characters associated with the trophic niche—body size, skull morphology and echolocation. As predicted by the HFR, we found evidence for labile Grinnellian niches: there was no similarity in ENMs between sister species; overlap in ENMs was significantly low in >65 % of all possible species pairs; there was no relationship between ENM niche overlap and phylogenetic distances between species; and there was no phylogenetic signal in suitable bioclimatic zones among species. Conversely, we found equivocal support for the HFR regarding Eltonian niche patterns. Closely related species tended to be distributed among ensembles rather than within ensembles, although there was no evidence for overdispersion in phylogenetic patterns in ensembles. In <50 % of the observed combinations of sympatric Miniopterus spp., we found significant signal for overdispersion of phenotypic and sensory characters. We hypothesize that selective processes associated with the adaptive radiation of Miniopterus spp. on Madagascar may have favoured bats to diversify first into broad scale habitat specialists, but argue that understanding the relative influence of bionomic processes at a local spatial scale will require more reciprocal comparisons of Eltonian niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:S50–S61

    CAS  PubMed  Google Scholar 

  • Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104

    Google Scholar 

  • Ahmadzadeh F, Flecks M, Carretero MA et al (2013) Rapid lizard evolution lacking niche conservatism: ecological diversification within a complex landscape. J Biogeogr 40:1807–1818

    Google Scholar 

  • Aldridge H, Rautenbach IL (1987) Morphology, echolocation and resource partitioning in insectivorous bats. J Anim Ecol 56:763–778

    Google Scholar 

  • Alfaro ME, Santini F, Brock C et al (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Nat Acad Sci USA 106:13410–13414

  • Andreas M, Reiter A, Benda P (2012) Dietary composition, resource partitioning and trophic niche overlap in three forest foliage-gleaning bats in central Europe. Acta Chiropterol 14:335–345

    Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Google Scholar 

  • Arita H (1997) Species composition and morphological structure of the bat fauna of Yucatan, Mexico. J Anim Eco 66:83–97

    Google Scholar 

  • Barclay RMR, Fullard JH, Jacobs DS (1999) Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Can J Zool 77:530–534

    Google Scholar 

  • Bloch CP, Stevens RD, Willig MR (2011) Body size and resource competition in New World bats: a test of spatial scaling laws. Ecography 34:460–468

    Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioural traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Bogdanowicz W, Fenton MB, Daleszczyk K (1999) The relationships between echolocation calls, morphology and diet in insectivorous bats. J Zool 247:381–393

    Google Scholar 

  • Bohmann K, Monadjem A, Lehmkuhl Noer C et al (2011) Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE 6:e21441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boria RA, Olson LE, Goodman SM et al (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77

    Google Scholar 

  • Boumans L, Vieites DR, Glaw F et al (2007) Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles. Mol Phylogenet Evol 45:822–839

    CAS  PubMed  Google Scholar 

  • Bull CM (1991) Ecology of parapatric distributions. Annu Rev Ecol Syst 22:19–36

    Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Google Scholar 

  • Christidis L, Goodman SM, Naughton K et al (2014) Insights into the evolution of a cryptic radiation of bats: dispersal and ecological radiation of Malagasy Miniopterus (Chiroptera: Miniopteridae). PLoS ONE 9:e92440

    PubMed Central  PubMed  Google Scholar 

  • Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. Proc Natl Acad Sci USA 106:19651–19658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R et al (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    CAS  PubMed  Google Scholar 

  • Devictor V, Clavel J, Julliard R et al (2010) Defining and measuring ecological specialization. J Appl Ecol 47:15–25

    Google Scholar 

  • Drummond AJ, Suchard MA, Xie D et al (2013) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol and Evol 29:1969–1973

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40:677–697

    Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Esselstyn JA, Maher SP, Brown RM (2011) Species interactions during diversification and community assembly in an island radiation of shrews. PLoS ONE 6:e21885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fauth JE, Bernardo J, Camara M et al (1996) Simplifying the jargon of community ecology: a conceptual approach. Am Nat 147:282–286

    Google Scholar 

  • Fitzpatrick BM, Turelli M (2006) The geography of mammalian speciation: mixed signals from phylogenies and range maps. Evolution 60:601–615

    CAS  PubMed  Google Scholar 

  • Freeman PW (1998) Form, function, and evolution in skulls and teeth of bats. In: Kunz TH, Racey PA (eds) Bat biology and conservation. Smithsonian Institution Press, Washington, DC, pp 140–156

    Google Scholar 

  • Garcia LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663

    Google Scholar 

  • Gautier L, Goodman SM (2008) Introduction à la flore. In: Goodman SM (ed) Paysages naturels et biodiversité de Madagascar. Muséum national d’Histoire naturelle, Paris, pp 103–140

    Google Scholar 

  • Glor RE (2010) Phylogenetic insights on adaptive radiation. Annu Rev Ecol Evol Syst 41:251–270

    Google Scholar 

  • Goodman SM (2011) Les chauves-souris de Madagascar. Association Vahatra, Antananarivo

    Google Scholar 

  • Goodman SM, Ryan KE, Maminirina CP et al (2007) Specific status of populations on Madagascar referred to Miniopterus fraterculus (Chiroptera: Vespertilionidae), with description of a new species. J Mammal 88:1216–1229

  • Goodman SM, Bradman HM, Maminirina CP et al (2008) A new species of Miniopterus (Chiroptera: Miniopteridae) from lowland southeastern Madagascar. Mamm Biol 73:199–213

    Google Scholar 

  • Goodman SM, Maminirina CP, Bradman HM et al (2009a) The use of molecular phylogenetic and morphological tools to identify cryptic and paraphyletic species: examples from the diminutive long-fingered bats (Chiroptera: Miniopteridae: Miniopterus) on Madagascar. Am Mus Novit 3669:1–34

    Google Scholar 

  • Goodman SM, Maminirina CP, Weyeneth N et al (2009b) The use of molecular and morphological characters to resolve the taxonomic identity of cryptic species: the case of Miniopterus manavi (Chiroptera, Miniopteridae). Zool Scr 38:339–363

    Google Scholar 

  • Goodman SM, Maminirina CP, Bradman HM et al (2010) Patterns of morphological and genetic variation in the endemic Malagasy bat Miniopterus gleni (Chiroptera: Miniopteridae), with the description of a new species, M. griffithsi. J Zool Syst Evol Res 48:75–86

    Google Scholar 

  • Goodman SM, Ramasindrazana B, Maminirina CP et al (2011) Morphological, bioacoustical, and genetic variation in Miniopterus bats from eastern Madagascar, with the description of a new species. Zootaxa 2880:1–19

    Google Scholar 

  • Gotelli NJ, Entsminger GL (2012) EcoSim: null models software for ecology. Version 7.7 Kesey-Bear

  • Hancock L, Edwards EJ (2014) Phylogeny and the inference of evolutionary trajectories. J Exp Bot 65:3491–3498

    PubMed Central  PubMed  Google Scholar 

  • Hastie T, Fithian W (2013) Inference from presence-only data; the ongoing controversy. Ecography 36:864–867

    PubMed Central  PubMed  Google Scholar 

  • Heller K-G, Helversen OV (1989) Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 80:178–186

    Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    CAS  PubMed  Google Scholar 

  • Jiménez-Valverde A, Lira-Noriega A, Peterson AT et al (2010) Marshalling existing biodiversity data to evaluate biodiversity status and trends in planning exercises. Ecol Res 25:947–957

    Google Scholar 

  • Jønsson KA, Fabre P-H, Fritz SA et al (2012) Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. Proc Nat Acad Sci USA 109:6620–6625

  • Kamilar JM, Cooper N (2013) Phylogenetic signal in primate behaviour, ecology and life history. P Roy Soc Lond B Bio 368:20120341

    Google Scholar 

  • Kamilar JM, Muldoon KM (2010) The climatic niche diversity of Malagasy primates: a phylogenetic perspective. PLoS ONE 5:e11073

    PubMed Central  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    CAS  PubMed  Google Scholar 

  • Kingston T, Jones G, Zubaid A et al (2000) Resource partitioning in rhinolophoid bats revisited. Oecologia 124:332–342

    Google Scholar 

  • Kozak KH, Wiens JJ (2010) Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am Nat 176:40–54

    PubMed  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim J et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Div Distr 19:1366–1379

    Google Scholar 

  • Lack D (1947) Darwin’s finches. Cambridge University Press, Cambridge

    Google Scholar 

  • Lam MM-Y, Martin-Creuzburg D, Rothhaupt K-O et al (2013) Tracking diet preference of bats using stable isotope and fatty acid signatures of faeces. PLoS ONE 8:e83452

    PubMed Central  PubMed  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analyses. J Stat Soft 25:1–18

    Google Scholar 

  • Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1007

    PubMed  Google Scholar 

  • Losos JB (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat 175:623–639

    PubMed  Google Scholar 

  • Losos JB, Glor RE, Kolbe JJ et al (2006) Adaptation, speciation, and convergence: a hierarchical analysis of adaptive radiation in Caribbean Anolis lizards. Ann Missouri Bot Gard 93:24–33

    Google Scholar 

  • Mackey BG, Lindenmayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28:1147–1166

    Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. Available from http://mesquiteproject.org (Accessed March 2014)

  • Maddison WP, Slatkin M (1991) Null models for the number of evolutionary steps in a character on a phylogenetic tree. Evolution 45:1184–1197

    Google Scholar 

  • Mahler DL, Revell LJ, Glor RE et al (2010) Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean anoles. Evolution 64:2731–2745

    PubMed  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    PubMed  Google Scholar 

  • Moat J, Smith P (2007) Atlas of the vegetation of Madagascar. Royal Botanic Gardens, Kew

    Google Scholar 

  • Monadjem A, Taylor PJ, Cotterill FPD et al (2010) Bats of central and southern Africa: a biogeographic and taxonomic synthesis. Wits University Press, Johannesburg

    Google Scholar 

  • Monadjem A, Goodman SM, Stanley WT et al (2013) A cryptic new species of Miniopterus from south-eastern Africa based on molecular and morphological characters. Zootaxa 3746:123–142

    PubMed  Google Scholar 

  • Muldoon KM, Goodman SM (2010) Ecological biogeography of Malagasy non-volant mammals: community structure is correlated with habitat. J Biogeogr 37:1144–1159

    Google Scholar 

  • Münkemüller T, Lavergne S, Bzeznik B et al (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3:743–757

    Google Scholar 

  • Orozco-terWengel P, Nagy ZT, Vieites DR et al (2008) Phylogeography and phylogenetic relationships of Malagasy tree and ground boas. Biol J Linn Soc 95:640–652

    Google Scholar 

  • Otto-Bliesner BL, Marshall SJ, Overpeck JT et al (2006) Simulating arctic climate warmth and ice field retreat in the Last Interglaciation. Science 311:1751–1753

    CAS  PubMed  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    CAS  PubMed  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M et al (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Google Scholar 

  • Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:1236–1238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    CAS  PubMed  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Puechmaille SJ, Allegrini B, Benda P et al (2014) A new species of the Miniopterus schreibersii species complex (Chiroptera: Miniopteridae) from the Maghreb Region, North Africa. Zootaxa 3794:108–124

    PubMed  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org (Accessed July 2014)

  • Rainho A, Palmerin JM (2011) The importance of distance to resources in the spatial modelling of bat foraging habitat. PLoS ONE 6:e19227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramasindrazana B, Goodman SM, Schoeman MC et al (2011) Identification of cryptic species of Miniopterus bats (Chiroptera: Miniopteridae) from Madagascar and the Comoros using bioacoustics overlaid on molecular genetic and morphological characters. Biol J Linn Soc 104:284–302

    Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.5. Available from http://beast.bio.ed.ac.uk/Tracer (Accessed March 2014)

  • Raxworthy CJ, Ingram CM, Rabibisoa N et al (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923

    PubMed  Google Scholar 

  • Razgour O, Clare EL, Zeale MRK et al (2011) High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol Evol 1:556–570

    PubMed Central  PubMed  Google Scholar 

  • Reddy S, Driskell A, Rabosky DL et al (2012) Diversification and the adaptive radiation of the vangas of Madagascar. Proc Royal Soc B 279:2062–2071

    CAS  Google Scholar 

  • Reding DM, Foster JT, James HF et al (2009) Convergent evolution of “creepers” in the Hawaiian honeycreeper radiation. Biol Lett 5:221–224

    PubMed Central  PubMed  Google Scholar 

  • Revell L (2012) Phylogenetic signal on very small trees. Phylogenetic tools for comparative biology. Available from http://blog.phytools.org/2012/09/phylogenetic-signal-on-very-small-trees.html (Accessed 14 September 2013)

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Google Scholar 

  • Sallan LC, Friedman M (2012) Heads or tails: staged diversification in vertebrate evolutionary radiations. Proc R Soc B 279:2025–2032

    PubMed Central  PubMed  Google Scholar 

  • Schatz GE (2000) Endemism in the Malagasy tree flora. In: Lourenço WR, Goodman SM (eds) Diversité et endémisme à Madagascar. Mémoires de la Société de Biogéographie, Paris

    Google Scholar 

  • Schluter D (1996) Ecological causes of adaptive radiation. Am Nat 148:S40–S64

    Google Scholar 

  • Schluter D (2000a) Ecological character displacement in adaptive radiation. Am Nat 156:S4–S16

    Google Scholar 

  • Schluter D (2000b) The ecology of adaptive radiation. Oxford University Press, New York

    Google Scholar 

  • Schoeman MC, Jacobs DS (2003) Support for the allotonic frequency hypothesis in an insectivorous bat community. Oecologia 134:154–162

    PubMed  Google Scholar 

  • Schoeman MC, Jacobs DS (2008) The relative influence of competition and prey defenses on the phenotypic structure of insectivorous bat ensembles in southern Africa. PLoS ONE 3:e3715

    PubMed Central  Google Scholar 

  • Schoeman MC, Jacobs DS (2011) The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles. Oecologia 166:493–506

    PubMed  Google Scholar 

  • Schoeman MC, Waddington KJ (2011) Do deterministic processes influence the phenotypic patterns of animalivorous bat ensembles at urban rivers? Afr Zool 46:288–301

    Google Scholar 

  • Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. P Roy Soc Lond B Bio 273:1987–1998

    Google Scholar 

  • Sexton JP, McIntyre PJ, Angert AL et al (2009) Evolution and ecology of species range limits. Annu Rev Ecol Syst 40:415–436

    Google Scholar 

  • Smith TB, Wayne RK, Girman DJ et al (1997) A role for ecotones in generating rainforest biodiversity. Science 276:1855–1857

    CAS  Google Scholar 

  • Soberón J (2007) Grinnellian and eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    PubMed  Google Scholar 

  • Stevens RD (2011) Relative effects of time for speciation and tropical niche conservatism on the latitudinal diversity gradient of phyllostomid bats. P Roy Soc Lond B Bio 278:2528–2536

    Google Scholar 

  • Stevens RD, Willig MR (1999) Size assortment in New World bat communities. J Mammal 80:644–658

    Google Scholar 

  • Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. Trends Ecol Evol 18:126–131

    Google Scholar 

  • Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    CAS  PubMed  Google Scholar 

  • Vences M, Glaw F (2002) Molecular phylogeography of Boophis tephraeomystax: a test case for east-west vicariance in Malagasy anurans. Spixiana 25:79–84

    Google Scholar 

  • Vences M, Wollenberg KC, Vieites DR et al (2009) Madagascar as a model region of species diversification. Trends Ecol Evol 24:456–465

    PubMed  Google Scholar 

  • Villalobos F, Arita HT (2010) The diversity field of New World leaf-nosed bats (Phyllostomidae). Global Ecol Biogeogr 19:200–211

    Google Scholar 

  • Warren DL (2012) In defense of ‘niche modeling’. Trends Ecol Evol 27:497–500

    PubMed  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    PubMed  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Google Scholar 

  • Webb C, Ackerly D, McPeek M et al (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Google Scholar 

  • Whittaker R, Willis K, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Google Scholar 

  • Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–197

    PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology and conservation biology. Annu Rev Evol Syst 36:519–539

    Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    PubMed  Google Scholar 

  • Willig MR, Mares MA (1989) A comparison of bat assemblages from phytogeographic zones of Venezuela. In: Morris DW, Abramsky Z, Fox BJ, Willig MR (eds) Patterns in the structure of mammalian communities. Texas Tech University, Lubbock, pp 59–67

    Google Scholar 

  • Wilmé L, Goodman SM, Ganzhorn J (2006) Biogeographic evolution of Madagascar’s microendemic biota. Science 312:1063–1065

    PubMed  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J et al (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Google Scholar 

  • Wollenberg KC, Vieites DR, van der Meijden A et al (2008) Patterns of endemism and species richness in Malagasy cophylin frogs support a key role of mountainous areas for speciation. Evolution 62:1890–1907

    PubMed  Google Scholar 

  • Wollenberg KC, Vieites DR, Glaw F et al (2011) Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evol Biol 11:217

  • Yoder AD, Heckman KL (2006) Mouse lemur phylogeography revises a model of ecogeographic constraint in Madagascar. In: Fleagle J, Lehman SM (eds) Primate biogeography. Springer, New York, pp 255–268

    Google Scholar 

  • Yoder AD, Nowak MD (2006) Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu Rev Ecol Evol Syst 37:405–431

    Google Scholar 

  • Yoder JB, Clancey E, Des Roches S et al (2010) Ecological opportunity and the origin of adaptive radiations. J Evol Biol 23:1581–1596

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Direction Générale de l’Environnement et des Forêts and Madagascar National Parks for providing authorizations for the capture, collection and exportation of animals under a protocol of collaboration between the Département de Biologie Animale (Université d’Antananarivo), Association Vahatra and the Field Museum of Natural History. Financial support for the fieldwork associated with this project was graciously given by the John D. and Catherine T. MacArthur Foundation and Volkswagen Foundation. Access to computing and storage facilities owned by parties and projects contributing to the Czech National Grid Infrastructure MetaCentrum, provided under the programme “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005), is greatly appreciated. Two anonymous reviewers made valuable comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Corrie Schoeman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoeman, M.C., Goodman, S.M., Ramasindrazana, B. et al. Species interactions during diversification and community assembly in Malagasy Miniopterus bats. Evol Ecol 29, 17–47 (2015). https://doi.org/10.1007/s10682-014-9745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-014-9745-4

Keywords

Navigation