Skip to main content
Log in

Red tails are effective decoys for avian predators

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The decoy or deflection hypothesis, which states that conspicuous colouration is present in non-vital parts of the body to divert attacks from head and trunk, thus increasing survival probability, is a possible explanation for the presence of such colouration in juveniles of non-aposematic species. To test this hypothesis we made plasticine and plaster lizard models of two colour morphs, red or dark-and-light striped tails, based on the colouration of spiny-footed lizard (Acanthodactylus erythrurus) hatchlings, which naturally show a dark-and-light striped dorsal pattern and red tail. Lizard models were placed in the field and also presented to captive common kestrels (Falco tinnunculus), a common avian lizard predator. The number of attacks and the body part attacked (tail or rest-of-body) were recorded, as well as the latency to attack. Our results suggest that models of both colour morphs were recognized as prey and attacked at a similar rate, but in the field, red-tailed models were detected, and thus attacked, sooner than striped-tailed. Despite this increase in detection rate by predators, red-tailed models effectively diverted attacks to the tail from the more vulnerable body parts, thus supporting the decoy hypothesis. Greater fitness benefits of attack diversion to the tail compared to the costs of increased detection rate by predators would explain the evolution and maintenance of red tail colouration in lizards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold EN (1984) Evolutionary aspects of tail shedding in lizards and their relatives. J Nat Hist 18:127–169

    Article  Google Scholar 

  • Arnold EN (1988) Caudal autotomy as a defense. In: Gans C, Huey RB (eds) Biology of the reptilia, vol 16., Ecology B: defense and life historyAlan R. Liss, New York, pp 235–274

    Google Scholar 

  • Bateman PW, Fleming PA (2009) To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. J Zool 277:1–14

    Article  Google Scholar 

  • Bateman PW, Fleming PA, Rolek B (2014) Bite me: blue tails as a ‘risky-decoy’ defense tactic for lizards. Curr Zool 60:333–337

    Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes, R package version 0.999999-0 edn. http://CRAN.R-project.org/package=lme4

  • Baylis SM, Cassey P, Hauber ME (2012) Capsaicin as a deterrent against introduced mammalian nest predators. Wilson J Ornithol 124:518–524

    Article  Google Scholar 

  • Belliure J (2006) Lagartija colirroja—Acanthodactylus erythrurus. In: Carrascal LM, Salvador A (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

  • BirdLife International (2014) Species factsheet: Falco tinnunculus. http://www.birdlife.org. Accessed Jan 2014

  • Booth CL (1990) Evolutionary significance of ontogenic colour-cange in animals. Biol J Linn Soc 40:125–163

    Article  Google Scholar 

  • Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vis Res 48:2022–2041

    Article  CAS  PubMed  Google Scholar 

  • Brodie ED III (1993) Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution 47:227–235

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Calsbeek R, Cox RM (2012) An experimental test of the role of predators in the maintenance of a genetically based polymorphism. J Evol Biol 25:2091–2101

    Article  CAS  PubMed  Google Scholar 

  • Carretero MA, Llorente GA (1993) Morphometry in a community of Mediterranean lacertid lizards, and its ecological relationships. Hist Anim 2:77–99

    Google Scholar 

  • Carrillo J, González-Dávila E (2009) Latitudinal variation in breeding parameters of the common kestrel Falco tinnunculus. Ardeola 56:215–228

    Google Scholar 

  • Carrillo J, Hernández EC, Nogales M, Delgado G, García R, Ramos T (1994) Geographic variation in the spring diet of Falco tinnunculus L. on the islands of Fuerteventura and El Hierro (Canary Islands). Bonn Zool Beitr 45:39–48

    Google Scholar 

  • Castilla AM, Labra A (1998) Predation and spatial distribution of the lizard Podarcis hispanica atrata: an experimental approach. Acta Oecol 19:107–114

    Article  Google Scholar 

  • Castilla AM, Barbadillo LJ, Bauwens D (1992) Annual variation in reproductive traits in the lizard Acanthodactylus erythrurus. Can J Zool 70:395–402

    Article  Google Scholar 

  • Castilla AM, Gosá A, Galán P, Pérez-Mellado V (1999) Green tails in lizards of the genus Podarcis: do they influence the intensity of predation? Herpetologica 55:530–537

    Google Scholar 

  • Clark DRJ, Hall RJ (1970) Function of the blue tail coloration of the five-lined skink Eumeces fasciatus. Herpetologica 26:271–274

    Google Scholar 

  • Cooper WE Jr, Vitt LJ (1985) Blue tails and autotomy: enhancement of predation avoidance in juvenile skinks. Z Tierpsychol 70:265–276

    Google Scholar 

  • Cooper WE Jr, Vitt LJ (1991) Influence of detectability and ability to escape on natural selection of conspicuous autotomous defenses. Can J Zool 69:757–764

    Article  Google Scholar 

  • Cuadrado M, Martín J, López P (2001) Camouflage and escape decisions in the common chameleon Chamaeleo chamaeleon. Biol J Linn Soc 72:547–554

    Article  Google Scholar 

  • Cuervo JJ, Belliure J (2013) Exploring the function of red colouration in female spiny-footed lizards (Acanthodactylus erythrurus): patterns of seasonal colour change. Amphib-Reptil 34:525–538

    Article  Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. D. Appleton and Company, New York

    Book  Google Scholar 

  • Endler JA (1980) Natural selection on color patterns in Poecilia reticulata. Evolution 34:76–91

    Article  Google Scholar 

  • Fox SF, McCoy JK (2000) The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field. Oecologia 122:327–334

    Article  Google Scholar 

  • Greene H (1988) Antipredator mechanisms in reptiles. In: Gans C, Huey RB (eds) Biology of the reptilia, vol 16., Ecology B: defense and life historyAlan R. Liss, New York, pp 1–152

    Google Scholar 

  • Haskell DG (1996) Do bright colors at nests incur a cost due to predation? Evol Ecol 10:285–288

    Article  Google Scholar 

  • Håstad O, Victorsson J, Ödeen A (2005) Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc Natl Acad Sci USA 102:6391–6394

    Article  PubMed Central  PubMed  Google Scholar 

  • Hawlena D (2009) Colorful tails fade when lizards adopt less risky behaviors. Behav Ecol Sociobiol 64:205–213

    Article  Google Scholar 

  • Hawlena D, Boochnik R, Abramsky Z, Bouskila A (2006) Blue tail and striped body: why do lizards change their infant costume when growing up? Behav Ecol 17:889–896

    Article  Google Scholar 

  • Jackson JF, Ingram W III, Campbell HW (1976) The dorsal pigmentation pattern of snakes as an antipredator strategy: a multivariate approach. Am Nat 110:1029–1053

    Article  Google Scholar 

  • Johnson J, Burt DB, DeWitt TJ (2008) Form, function, and fitness: pathways to survival. Evolution 62:1243–1251

    Article  PubMed  Google Scholar 

  • Kemp DJ, Rutowski RL (2011) The role of coloration in mate choice and sexual interactions in butterflies. Adv Study Behav 43:55–92

    Article  Google Scholar 

  • Kodandaramaiah U, Lindenfors P, Tullberg BS (2013) Deflective and intimidating eyespots: a comparative study of eyespot size and position in butterflies. Ecol Evol 3:4518–4524

    Article  PubMed Central  PubMed  Google Scholar 

  • Kraus F, Allison A (2009) A remarkable ontogenetic change in color pattern in a new species of Oreophryne (Anura: Microhylidae) from Papua New Guinea. Copeia 2009:690–697

    Article  Google Scholar 

  • Lancaster LT, McAdam AG, Wingfield JC, Sinervo BR (2007) Adaptive social and maternal induction of antipredator dorsal patterns in a lizard with alternative social strategies. Ecol Lett 10:798–808

    Article  PubMed  Google Scholar 

  • Martín J, López P (1990) Amphibians and reptiles as prey of birds in Southwestern Europe. Smithson Herpetol Inf Serv 82:1–43

    Google Scholar 

  • Mochida K (2011) Combination of local selection pressures drives diversity in aposematic signals. Evol Ecol 25:1017–1028

    Article  Google Scholar 

  • Møller AP, Erritzøe J (2010) Why birds eat colourful grit: colour preferences revealed by the colour of gizzard stones. J Evol Biol 23:509–517

    Article  PubMed  Google Scholar 

  • Ochi H, Awata S (2009) Resembling the juvenile colour of host cichlid facilitates access of the guest cichlid to host territory. Behaviour 146:741–756

    Article  Google Scholar 

  • Pianka ER, Vitt LJ (2006) Lizards: windows to the evolution of diversity. University of California Press, Berkeley

    Google Scholar 

  • Pollo CJ, Pérez-Mellado V (1990) Biología reproductora de tres especies mediterráneas de Lacertidae. Mediterránea, Serie de Estudios Biológicos 12:149–160

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. Version 2.15.3. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rosenblum EB (2006) Convergent evolution and divergent selection: lizards at the White Sands ecotone. Am Nat 167:1–15

    Article  PubMed  Google Scholar 

  • Ruiz-Rodríguez M, Avilés JM, Cuervo JJ, Parejo D, Ruano F, Zamora-Muñoz C, Sergio F, López-Jiménez L, Tanferna A, Martín-Vivaldi M (2013) Does avian conspicuous colouration increase or reduce predation risk? Oecologia 173:83–93

    Article  PubMed  Google Scholar 

  • Schaefer HM, Levey DJ, Schaefer V, Avery ML (2006) The role of chromatic and achromatic signals for fruit detection by birds. Behav Ecol 17:784–789

    Article  Google Scholar 

  • Seva Román E (1982) Taxocenosis de lacértidos en un arenal costero alicantino. Ph.D. Thesis, Universidad de Alicante, Alicante

  • Shepard DB (2007) Habitat but not body shape affects predator attack frequency on lizard models in the Brazilian Cerrado. Herpetologica 63:193–202

    Article  Google Scholar 

  • Stuart-Fox DM, Moussalli A, Marshall NJ, Owens IPF (2003) Conspicuous males suffer higher predation risk: visual modelling and experimental evidence from lizards. Anim Behav 66:541–550

    Article  Google Scholar 

  • Telemeco RS, Baird TA, Shine R (2011) Tail waving in a lizard (Bassiana duperreyi) functions to deflect attacks rather than as a pursuit-deterrent signal. Anim Behav 82:369–375

    Article  Google Scholar 

  • Valkonen J, Niskanen M, Björklund M, Mappes J (2011) Disruption or aposematism? Significance of dorsal zigzag pattern of European vipers. Evol Ecol 25:1047–1063

    Article  Google Scholar 

  • VanderWerf EA, Freed LA (2003) Elepaio subadult plumages reduce aggression through graded status-signaling, not mimicry. J Field Ornithol 74:406–415

    Article  Google Scholar 

  • Vanzyl AJ (1994) Comparison of the diet of the common kestrel Falco tinnunculus in South Africa and Europe. Bird Study 41:124–130

    Google Scholar 

  • Vásquez RA, Ebensperger LA, Bozinovic F (2002) The influence of habitat on travel speed, intermittent locomotion, and vigilance in a diurnal rodent. Behav Ecol 13:182–187

    Article  Google Scholar 

  • Vervust B, Grbac I, Van Damme R (2007) Differences in morphology, performance and behaviour between recently diverged populations of Podarcis sicula mirror differences in predation pressure. Oikos 116:1343–1352

    Article  Google Scholar 

  • Vervust B, Van Loy H, Van Damme R (2011) Seeing through the lizard’s trick: do avian predators avoid autotomous tails? Cent Eur J Biol 6:293–299

    Article  Google Scholar 

  • Vitt LJ, Cooper WE Jr (1986) Tail loss, tail color, and predator escape in Eumeces (Lacertilia: Scincidae): age-specific differences in costs and benefits. Can J Zool 64:583–592

    Article  Google Scholar 

  • Watson CM, Roelke CE, Pasichnyk PN, Cox CL (2012) The fitness consequences of the autotomous blue tail in lizards: an empirical test of predator response using clay models. Zoology 115:339–344

    Article  PubMed  Google Scholar 

  • Wilson BS (1992) Tail injuries increase the risk of mortality in free-living lizards (Uta stansburiana). Oecologia 92:145–152

    Article  Google Scholar 

Download references

Acknowledgments

We thank C. Esteban, J. Calatayud, M. Cruz, M. Almarcha and C. Zaragoza for their help in the field study, and the staff of the Santa Faz Wildlife Rehabilitation Centre (Alicante, Spain) for their help in the captivity study. Deborah Fuldauer revised English language usage. These studies were funded by the Spanish Ministry of Education and Science and the European Regional Development Fund (Grant CGL2008-00137/BOS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belén Fresnillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fresnillo, B., Belliure, J. & Cuervo, J.J. Red tails are effective decoys for avian predators. Evol Ecol 29, 123–135 (2015). https://doi.org/10.1007/s10682-014-9739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-014-9739-2

Keywords

Navigation