Skip to main content
Log in

Are woody seeder plants more prone than resprouter to population genetic differentiation in Mediterranean-type ecosystems?

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

High diversification of woody seeder lineages is characteristic of the south-western cape floristic region (CFR), South Africa, which has been explained as a consequence of its mild Mediterranean climate and reliable winter rainfall. Such climatic regime reduces the risk of post-fire recruitment failure, acting as an ecological filter that favours seeder populations, thus promoting genetic differentiation and diversification in seeder populations, as previously seen in the South African heath Erica coccinea. To explore this hypothesis further, genetic population structure was investigated in two Mediterranean Erica species, one seeder (Erica umbellata) and the other resprouter (Erica australis), using nuclear microsatellites. These two species are endemic to the western Mediterranean Basin and co-occur in heathlands of the Strait of Gibraltar region. Mean annual rainfall in this region is similar to that from the south-western CFR, but summer stress is more marked and winter rainfall is much less reliable. Contrary to what was found in E. coccinea, average genetic diversity levels were considerably lower in seeder populations (E. umbellata), regardless of an apparently higher gene flow among them. No differences in genetic differentiation among populations were found between the two species. The occurrence of less favourable climatic conditions for post-fire recruitment in the western Mediterranean compared to the south-western CFR may affect seeder populations more strongly than resprouter and may thus account for lower levels of within-population genetic diversity in the seeder E. umbellata. In addition, putatively higher migration rates in the seeder E. umbellata, may contribute to reduce its potential for genetic differentiation. This study provides evidence that high divergence of seeder populations is not a general rule in fire-prone, Mediterranean-type ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arroyo J, Herrera J (1988) Polinización y arquitectura floral en Ericaceae de Andalucía Occidental. Lagascalia 15(extra):615–623

  • Avise JC (2000) Phylogeography. Harvard University Press, Boston

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N,. Bonhomme F (2004) GENETIX 4.05, logiciel sous windows™ pour la génétique des populations. Laboratoire Génome, populations, interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier, France

  • Bond WJ, vanWilgen BW (1996) Fire and plants. Chapman and Hall, London

    Book  Google Scholar 

  • Bullock JM, Clarke RT (2000) Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124:506–521

    Article  Google Scholar 

  • Calvo L, Tarrega R, de Luis E (1998) Space-time distribution patterns of E. australis L. subsp. aragonensis (Willk) after experimental burning, cutting, and ploughing. J Ecol 137:1–12

    Google Scholar 

  • Chase MW, Hills HG (1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40:215–220

    Article  Google Scholar 

  • Cowling RM, Lombard AT (2002) Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. Divers Distrib 8:163–179

    Article  Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in mediterranean-climate regions. Trends Ecol Evol 11:362–366

    Google Scholar 

  • Cowling RM, Ojeda F, Lamont BB, Rundel PW, Lechmere-Oertel R (2005) Rainfall reliability, a neglected factor in explaining convergence and divergence of plant traits in fire-prone Mediterranean-climate ecosystems. Glob Ecol Biogeogr 14:509–519

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MA

  • Cruz A, Pérez B, Moreno JM (2003) Resprouting of the Mediterranean-type shrub E. australis with modified lignotuber carbohydrate content. J Ecol 91:348–356

    Article  Google Scholar 

  • de Benito N (1948) Brezales y Brezos. Instituto Forestal de Investigaciones y Experiencia, Madrid

    Google Scholar 

  • Díez-Dapena MJ, Fernández-González I (1989) Identificación de las Ericáceas españolas por su morfología polínica. Pollen Spores 31:215–227

    Google Scholar 

  • Dolan RW, Quintana-Ascencio PF, Menges ES (2008) Genetic change following fire in populations of a seed-banking perennial plant. Oecologia 158:355–360

    Article  PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 13:479–491

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Fagúndez J, Izco J (2004) Seed morphology of Erica L. sect. Tylospora Salisb. ex I. Hansen. Israel J Plant Sci 52:341–346

    Article  Google Scholar 

  • Fagúndez J, Juan R, Fernández I, Pastor J, Izco J (2010) Systematic relevance of seed coat anatomy in the European heathers (Ericeae, Ericaceae). Plant Syst Evol 284:65–76

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Goudet J (2001) FSTAT v. 2.9.3.2, a program to estimate and test gene diversities and fixation indices. Available from http://www2.unil.ch/popgen/softwares/fstat.htm

  • Higgins SI, Pickett STA, Bond WJ (2000) Predicting extinction risks for plants: environmental stochasticity can save declining populations. Trends Ecol Evol 15:516–520

    Article  PubMed  Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Lamont BB, Markey A (1995) Biogeography of fire-killed and resprouting Banksia species in southwestern Australia. Aust J Bot 48:283–303

    Article  Google Scholar 

  • Langella O (2000) POPULATIONS (Logiciel de genétique des populations). CNRS, France. Available at: http://bioinformatics.org/~tryphon/populations/

  • Marañón T, Ajbilou R, Ojeda F, Arroyo J (1999) Biodiversity of woody species in oak woodlands of southern Spain and northern Morocco. Forest Ecol Manag 115:147–156

    Article  Google Scholar 

  • Martin PR, McKay JK (2004) Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58:938–945

    PubMed  Google Scholar 

  • McGuire AF, Kron KA (2005) Phylogenetic relationships of European and African Ericas. Int J Plant Sci 166:311–318

    Article  CAS  Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    Article  PubMed  Google Scholar 

  • Moreira B, Tormo J, Estrelles E, Pausas JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627–635

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Ojeda F (1998) Biogeography of seeder and resprouter Erica species in the Cape Floristic Region: where are the resprouters? Biol J Linn Soc 63:331–347

    Google Scholar 

  • Ojeda F, Arroyo J, Marañón T (1998) The phytogeography of European and Mediterranean heath species (Ericoideae, Ericaceae): a quantitative analysis. J Biogeogr 25:165–178

    Article  Google Scholar 

  • Ojeda F, Brun FG, Vergara JJ (2005) Fire, rain, and the selection of seeder and resprouter life-histories in fire-recruiting, woody plants. New Phytol 168:155–165

    Article  PubMed  Google Scholar 

  • Oliver EGH, Linder HP, Rourke JP (1983) Geographical distribution of present-day Cape taxa and their phytogeographical significance. Bothalia 14:427–440

    Google Scholar 

  • Pirie MD, Oliver EGH, Bellstedt DU (2011) A densely sampled ITS phylogeny of the Cape flagship genus Erica L. suggests numerous shifts in floral macro-morphology. Mol Phylogenet Evol 61:593–601

    Article  PubMed  Google Scholar 

  • Pritchard JK (2010) Documentation for STRUCTURE software: version 2.3.3. Available at http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_doc.pdf

  • Pritchard JK, Stephens M, Donnelli P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Quintana JR, Cruz A, Fernández-González F, Moreno JM (2004) Time of germination and establishment success after fire of three obligate seeders in a Mediterranean shrubland of central Spain. J Biogeogr 31:241–249

    Article  Google Scholar 

  • Rohlf FJ (2002) NtSYSpc, Numerical taxonomy and multivariate analysis system. Version 2.11a, user guide. Exeter software, New York

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Segarra-Moragues JG, Ojeda F (2010) Postfire response and genetic diversity in E. coccinea: connecting population dynamics and diversification in a biodiversity hotspot. Evolution 64:3511–3524

    Article  PubMed  Google Scholar 

  • Segarra-Moragues JG, Donat-Caerols S, Ojeda F (2009) Isolation and characterization of microsatellite loci in the Cape fynbos heath E. coccinea (Ericaceae). Conserv Genet 10:1815–1819

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Trigueros-Vera D, Parra-Martín R, Rossini-Oliva S (2010) Effect of chemicals and physical treatments on seed germination of E. australis. Ann Bot Fenn 47:353–360

    Article  Google Scholar 

  • Valbuena L, Vera ML (2002) The effects of thermal scarification and seed storage on germination of four heathland species. Plant Ecol 161:137–144

    Article  Google Scholar 

  • Valbuena L, Tárrega R, Luis-Calabuig E (2000) Seed banks of E. australis and Calluna vulgaris in a heathland subjected to experimental fire. J Veg Sci 11:161–166

    Article  Google Scholar 

  • Verdú M, Pausas JG, Segarra-Moragues JG, Ojeda F (2007) Burning phylogenies: fire, molecular evolutionary rates, and diversification. Evolution 61:2195–2204

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wells PV (1969) The relation between mode of regeneration and extent of speciation in woody genera of the California chaparral. Evolution 23:264–267

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mohammed Ater, from the University Abdelmalek-Essaadi for providing permits for fieldwork. Manu Gil, Ana Payo and Maria Simpson helped with plant sampling.The facilities at SCSIE (Universitat de València) were used for fragment analysis. Financial support for lab work has been provided by project VAMPIRO (CGL2008-05289-C02-01/BOS; Spanish Ministerio de Ciencia e Innovación), project P07-RNM-02869 (Junta de Andalucía, Spain) and project ACOMP09/073 (Generalitat Valenciana, Spain). JGS-M was supported by a ‘Ramón y Cajal’ (MICINN-RYC, Spain) postdoctoral contract. CT-D was supported by the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ojeda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segarra-Moragues, J.G., Torres-Díaz, C. & Ojeda, F. Are woody seeder plants more prone than resprouter to population genetic differentiation in Mediterranean-type ecosystems?. Evol Ecol 27, 117–131 (2013). https://doi.org/10.1007/s10682-012-9586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-012-9586-y

Keywords

Navigation