Skip to main content

Advertisement

Log in

MHC-associated mating strategies and the importance of overall genetic diversity in an obligate pair-living primate

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Mate choice is one of the most important evolutionary mechanisms. Females can improve their fitness by selectively mating with certain males. We studied possible genetic benefits in the obligate pair-living fat-tailed dwarf lemur (Cheirogaleus medius) which maintains life-long pair bonds but has an extremely high rate of extra-pair paternity. Possible mechanisms of female mate choice were investigated by analyzing overall genetic variability (neutral microsatellite marker) as well as a marker of adaptive significance (major histocompatibility complex, MHC-DRB exon 2). As in human medical studies, MHC-alleles were grouped to MHC-supertypes based on similarities in their functional important antigen binding sites. The study indicated that females preferred males both as social and as genetic fathers for their offspring having a higher number of MHC-alleles and MHC-supertypes, a lower overlap with female’s MHC-supertypes as well as a higher genome wide heterozygosity than randomly assigned males. Mutual relatedness had no influence on mate choice. Females engaged in extra-pair mating shared a significant higher number of MHC-supertypes with their social partner than faithful females. As no genetic differences between extra-pair young (EPY) and intra-pair young (IPY) were found, females might engage in extra-pair mating to ‘correct’ for genetic incompatibility. Thus, we found evidence that mate choice is predicted in the first place by the ‘good-genes-as-heterozygosity hypothesis’ whereas the occurrence of extra-pair matings supports the ‘dissassortative mating hypothesis’. To the best of our knowledge this study represents the first investigation of the potential roles of MHC-genes and overall genetic diversity in mate choice and extra-pair partner selection in a natural, free-living population of non-human primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander J, Stimson WH (1988) Sex hormones and the course of parasitic infection. Parasitol Today 4:189–193

    Article  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton, New Jersey

    Google Scholar 

  • Apanius V, Penn D, Slev P, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    PubMed  CAS  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  PubMed  CAS  Google Scholar 

  • Bertoni R, Sidney J, Fowler P et al (1997) Human histocompatibility leukocyte antigen-binding supermotifs predict broadly cross-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis. J Clin Invest 100:503–513

    Article  PubMed  CAS  Google Scholar 

  • Birkhead TR, Møller AP (1998) Sperm competition and sexual selection. Academic Press, London

    Google Scholar 

  • Bowen L, Aldridge BM, Gulland F, van Bonn W, DeLong R, Melin S, Lowenstine LJ, Stott JL, Johnson ML (2004) Class II multiformity generated by variable MHC-DRB region configurations in the California sea lion (Zalophus californiasus). Immunogenetics 56:12–27

    Article  PubMed  CAS  Google Scholar 

  • Bowen L, Aldridge BM, DeLong R, Melin S, Buckles EL, Gulland F, Lowenstine LJ, Stott JL, Johnson ML (2005) An immunogenetic basis for the high prevalence of urogenital cancer in a free-ranging population of California sea lions (Zalophus californianus). Immunogenetics 56:846–848

    Article  PubMed  CAS  Google Scholar 

  • Brown JL (1997) A theory of mate choice based on heterozygosity. Behav Biol 8:60–65

    Google Scholar 

  • Brown JL (1999) The new heterozygosity theory of mate choice and the MHC. Genetica 104:215–221

    Article  CAS  Google Scholar 

  • Brown RE, Singh PB, Roser B (1987) The major histocompatibility complex and the chemosensory recognition of individuality in rats. Phys Behav 40:65–73

    Article  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Saper MA et al (1988) A hypothetical model of foreign antigen binding site of class II histocompatibility molecules. Nature 332:845–850

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC et al (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA DR1. Nature 364:33–39

    Article  PubMed  CAS  Google Scholar 

  • Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, Kaslow R (1999) HLA and HIV-1: heterozygote advantage and B*35*-Cw*04 disadvantage. Science 283:1748–1752

    Article  PubMed  CAS  Google Scholar 

  • Clarke B, Kirby DR (1966) Maintenance of histocompatibility polymorphisms. Nature 211:999–1000

    Article  PubMed  CAS  Google Scholar 

  • Cohas A, Yoccoz NG, Da Silva A, Goossens B, Allainé D (2006) Extra-pair paternity in the monogamous Alpine marmot (Marmota marmota): the roles of social setting and female mate choice. Behav Ecol Sociobiol 59:597–605

    Article  Google Scholar 

  • Colegrave N, Kotiaho JS, Tomkins J (2002) Mate choice or polyandry: reconciling genetic compatibility and good genes sexual selection. Evol Ecol Res 4:911–917

    Google Scholar 

  • Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983

    PubMed  CAS  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    Article  PubMed  CAS  Google Scholar 

  • Ditchkoff SS, Lochmiller RL, Masters BS, Hoofer SR, Van den Bussche RA (2001) Major-histocompatibility-complex-associated variation in secondary sexual traits of white-tailed deer (Odocoileus virginianus): evidence for goog-genes advertisement. Evolution 55:616–625

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    Article  PubMed  CAS  Google Scholar 

  • Dorak MT, Lawson T, Machulla HGK, Mills KI, Burnett AK (2002) Increased heterozygosity for MHC class II lineages in newborn males. Genes Immun 3:263–269

    Article  PubMed  CAS  Google Scholar 

  • Doxiadis GGM, Otting N, de Groot NG, Bontrop RE (2001) Differential evolutionary MHC class II strategies in humans and rhesus macaques: relevance for biomedical studies. Immunol Rev 183:76–85

    Article  PubMed  CAS  Google Scholar 

  • Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095

    PubMed  CAS  Google Scholar 

  • Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311

    Article  Google Scholar 

  • Eggert F, Muller-Ruchholtz W, Ferstl R (1999) Olfactory cues associated with the major histocompatibility complex. Genetica 104:191–197

    Article  CAS  Google Scholar 

  • Egid K, Brown JL (1989) The major histocompatibility complex and female mating preferences in mice. Anim Behav 38:548–549

    Article  Google Scholar 

  • Ekblom R, Saether SA, Grahn M et al (2004) Major histocompatibility complex variation and mate choice in a lekking bird, the great snipe (Gallinago media). Mol Ecol 13:3821–3828

    Article  PubMed  CAS  Google Scholar 

  • Eklund A (1997) The major histocompatibility complex and mating preferences in wild house mice (Mus domesticus). Behav Ecol 8:630–634

    Article  Google Scholar 

  • Evans JP, Magurran EA (2000) Multiple benefits of multiple mating in guppies. PNAS 97:10074–10076

    Article  PubMed  CAS  Google Scholar 

  • Fietz J (1999a) Monogamy as a rule rather than exception in nocturnal lemurs: the case of the fat-tailed dwarf lemur, Cheirogaleus medius. Ethology 105:259–272

    Article  Google Scholar 

  • Fietz J (1999b) Mating system of Microcebus murinus. Am J Primatol 48:127–133

    Article  PubMed  CAS  Google Scholar 

  • Fietz J, Dausmann KH (2003) Costs and potential benefits of parental care in the nocturnal fat-tailed dwarf lemur (Cheirogaleus medius). Folia Primatol 74:246–258

    Article  PubMed  Google Scholar 

  • Fietz J, Zischler H, Schwiegk C et al (2000) High rates of extra-pair young in the pair-living fat-tailed dwarf lemur, Cheirogaleus medius. Behav Ecol Sociobiol 49:8–17

    Article  Google Scholar 

  • Foerg R (1982) Reproduction in Cheirogaleus medius. Folia Primatol 39:49–62

    PubMed  CAS  Google Scholar 

  • Foerster K, Delhey K, Johnsen A, Lifjeld JT, Kempenaers B (2003) Females increase offspring heterozygosity and fitness through extra-pair matings. Nature 425:714–717

    Article  PubMed  CAS  Google Scholar 

  • Freeman-Gallant CR, Meguerdichian M, Wheelwright NT, Sellecito SV (2003) Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird. Mol Ecol 12:3077–3083

    Article  PubMed  Google Scholar 

  • Froeschke G, Sommer S (2005) MHC class II DRB constitution and parasite load in the striped mouse, Rhabdomys pumilio, in the Southern Kalahari. Mol Biol Evol 22:1254–1259

    Article  PubMed  CAS  Google Scholar 

  • Ganzhorn JU, Sorg JP (1996) Ecology and economy of a tropical dry forest in Madagascar. In: Primate Report 46, Göttingen

  • Garside P, Kennedy MW, Wakelin D, Lawrence CE (2000) Immunopathology of intestinal helminth infection. Parasite Immunol 22:605–612

    Article  PubMed  CAS  Google Scholar 

  • Girman DJ, Mills MGL, Geffen E, Wayne RK (1997) A molecular genetic analysis of social structure, dispersal and interpack relationships of the African wild dog (Lycaon pictus). Behav Ecol Sociobiol 40:187–198

    Article  Google Scholar 

  • Goossens B, Graziani L, Waits LP et al (1998) Extra-pair paternity in the monogamous Alpine marmot revealed by nuclear DNA microsatellite analysis. Behav Ecol Sociobiol 43:281–288

    Article  Google Scholar 

  • Grossman CJ (1984) Regulation of the immune system by sex steroids. Endocr Rev 5:435–455

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    Article  PubMed  CAS  Google Scholar 

  • Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Harf R, Sommer S (2005) Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol 14:85–91

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW, Black FL (1997) HLA and mate selection: no evidence in South Amerindians. Am J Hum Genet 61:505–511

    Article  PubMed  CAS  Google Scholar 

  • Ihara Y (2002) A model for evolution of male parental care and female multiple mating. Am Nat 160:235–244

    Article  PubMed  Google Scholar 

  • Janeway CA, Travers P (2002) Immunology. Spektrum Akademischer Verlag GmbH, Oxford

    Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley & Sons, New York

    Google Scholar 

  • Kokko H, Brooks R, Jennions MD, Morley J (2003) The evolution of mate choice and mating biases. Proc Biol Sci 270:653–664

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Landry C, Garant D, Duchesne P, Bernatchez L (2001) ‘Good genes as heterozygosity’: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proc R Soc Lond B 268:1279–1285

    Article  CAS  Google Scholar 

  • Leinders-Zufall T, Brennan P, Widmayer P, Chandramani P, Maul-Pavicic A, Jäger M, Li X-H, Breer H, Zufall F, Boehm T (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Lund O, Nielsen M, Kesmir C et al (2004) Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 55:797–810

    Article  PubMed  CAS  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  • Marshall RC, Buchanan KL, Catchpole C (2003) Sexual selection and individual genetic diversity in a songbird. Proc R Soc Lond B 270:S248–S250

    Article  Google Scholar 

  • Mays HLJ, Hill GE (2004) Choosing mates: good genes versus genes that are good fit. Trends Ecol Evol 19:554–559

    Article  PubMed  Google Scholar 

  • Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243

    Article  PubMed  CAS  Google Scholar 

  • Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557

    Article  Google Scholar 

  • Ober C, Weitkamp L, Cox N, Kostyu D, Sherman D (1997) HLA and mate choice in humans. Am J Hum Genet 61:497–504

    Article  PubMed  CAS  Google Scholar 

  • Ober C, Hyslop T, Elias S, Weitkamp LR, Hauck WW (1998) Human leucocyte antigen matching and fetal loss: results of a 10-year prospective study. Hum Reprod 13:33–38

    Article  PubMed  CAS  Google Scholar 

  • Olsson M, Madsen T, Nordby J et al (2003) Major histocompatibility complex and mate choice in sand lizards. Proc R Soc Lond B 270:S254–S256

    Article  CAS  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989a) Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2700

    Article  PubMed  CAS  Google Scholar 

  • Orita M, Sekiya T, Hayashi K (1989b) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879

    Article  PubMed  CAS  Google Scholar 

  • Paterson S, Pemberton JM (1997) No evidence for major histocompatibility complex-dependent mating patterns in a free-living ruminant population. Proc R Soc Lond B 264:1813–1819

    Article  CAS  Google Scholar 

  • Penn DJ (2002) The scent of genetic compatibility: sexual selection and the major histocompatibiliy complex. Ethology 108:1–21

    Article  Google Scholar 

  • Penn DJ, Potts WK (1998) MHC-disassortative mating preferences reversed by cross-fostering. Proc R Soc Lond B 265:1299–1306

    Article  CAS  Google Scholar 

  • Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164

    Article  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    PubMed  CAS  Google Scholar 

  • Potts WK (2002) Wisdom though immunogenetics. Nat Genet 30:130–131

    Article  PubMed  CAS  Google Scholar 

  • Promislow DE, Smith EA, Pearse L (1998) Adult fitness consequences of sexual selection in Drosophila melanogaster. Proc Natl Acad Sci USA 95:10687–10692

    Article  PubMed  CAS  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Reusch TBH, Häberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302

    Article  PubMed  CAS  Google Scholar 

  • Reusch TBH, Schaschl H, Wegner KM (2004) Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback. Immunogenetics 56:427–437

    Article  PubMed  CAS  Google Scholar 

  • Richardson DS, Komdeur J, Burke T, von Schantz T (2005) MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc R Soc Lond B 272:759–767

    Article  Google Scholar 

  • Roberts SC, Gosling LM (2003) Genetic similarity and quality interact in mate choice decisions by female mice. Nat Genet 35:103–106

    Article  PubMed  CAS  Google Scholar 

  • Roberts SC, Hale ML, Petrie M (2005a) Correlations between heterozygosity and measures of genetic similarity: implications for understanding mate choice. J Evol Biol 19:558–569 doi: 10.111/j.1420–9101.2005.01003.x

    Google Scholar 

  • Roberts SC, Little AC, Gosling LM et al (2005b) MHC-heterozygosity and human facial attractiveness. Evol Hum Behav 26:213–226

    Article  Google Scholar 

  • Robinson J, Waller MJ, Parham P et al (2003) IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311–314

    Article  PubMed  CAS  Google Scholar 

  • Ryan MJ (1997) Sexual selection and mate choice. In: Krebs JR, Davies NB (eds) Sexual selection and mate choice. Blackwell, Oxford, pp 179–202

    Google Scholar 

  • Sauermann U, Nürnberg P, Bercovitch FB et al (2001) Increased reproductive success of MH class II heterozygous males among free-ranging rhesus macaques. Hum Genet 108:249–254

    Article  PubMed  CAS  Google Scholar 

  • Schad J, Sommer S, Ganzhorn JU (2004) MHC variability of a small lemur in the littoral forest fragments of southeastern Madagascar. Conserv Genet 5:299–309

    Article  CAS  Google Scholar 

  • Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439–450

    PubMed  CAS  Google Scholar 

  • Schwensow N, Fietz J, Dausmann K, Sommer S (2007) Neutral versus adaptive variation in parasite resistance: importance of MHC-supertypes in a free-ranging primate. Heredity. doi: 10.1038/sj.hdy.6800993

  • Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–212

    Article  PubMed  CAS  Google Scholar 

  • Singh P (1998) The present status of the ‘carrier hypotheses’ for chemosensory recognition of genetic individuality. Genetica 104:231–233

    Article  PubMed  Google Scholar 

  • Singh PM, Brown RE, Roser B (1987) MHC antigens in urine as olfactory recognition cues. Nature 327:161–164

    Article  PubMed  CAS  Google Scholar 

  • Slate J, Pemberton JM (2002) Comparing molecular measures for detecting inbreeding depression. J Evol Biol 15:20–31

    Article  Google Scholar 

  • Sommer S (2003) Effects of habitat fragmentation and changes of dispersal behaviour after a recent population decline on the genetic variability of noncoding and coding DNA of monogamous Madagasy rodent. Mol Ecol 12:2845–2851

    Article  PubMed  CAS  Google Scholar 

  • Sommer S (2005a) Major histocompatibility complex and mate choice in a monogamous rodent. Behav Ecol Sociobiol 58:181–189

    Article  Google Scholar 

  • Sommer S (2005b) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16

    Article  PubMed  CAS  Google Scholar 

  • Sommer S, Schwab D, Ganzhorn JU (2002) MHC diversity of endemic Malagasy rodents in relation to range contraction and social system. Behav Ecol Sociobiol 51:214–221

    Article  Google Scholar 

  • Southwood S, Sidney J, Kondo A et al (1998) Several common HLA-DR types share leagely overlapping peptide binding repertoires. J Immunol 160:3363–3373

    PubMed  CAS  Google Scholar 

  • Spencer PBS, Horsup AB, Marsh HD (1998) Enhancement of reproductive success through mate choice in a social rock-wallaby, Petrogale assimils (Macropodidae) as revealed by microsatellite markers. Behav Ecol Sociobiol 43:1–9

    Article  Google Scholar 

  • Thornhill R, Gangestad S, Miller R et al (2003) Major histocampatibility complex genes, symmetry, and body scent attractiveness in men and women. Behav Ecol 15:668–678

    Article  Google Scholar 

  • Thursz MR, Thomas HC, Greenwood BM, Hill AV (1997) Heterozygote advantage for HLA class II-type in hepatitis virus infection. Nat Genet 17:11–12

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg E, Korber B, Sollars C et al (2003) Advantage of rare HLA supertype in HIV disease progression. Nat Med 9:928–935

    Article  PubMed  CAS  Google Scholar 

  • Travi BL, Osorio Y, Melby PC et al (2002) Gender is a major determinant of the clinical evolution and immune response in hamsters infected with Leishmania spp. Infect Immun 70:2288–2296

    Article  PubMed  CAS  Google Scholar 

  • Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited Review. Mol Ecol 9:1013–1027

    Article  PubMed  CAS  Google Scholar 

  • Wedekind C, Seebeck T, Bettens F, Paepke AJ (1995) MHC-dependent mate preferences in humans. Proc R Soc Lond B 260:245–249

    Article  CAS  Google Scholar 

  • Wedekind C, Walker M, Portmann J et al (2004) MHC-linked susceptibility to a bacterial infection, but no MHC-linked cryptic female choice within whitefish. J Evol Biol 17:11–18

    Article  PubMed  CAS  Google Scholar 

  • Wegner KM, Kalbe M, Kurtz J, Reusch TBH, Milinski M (2003) Parasite selection for immunogenetic optimality. Science 301:1343

    Article  PubMed  CAS  Google Scholar 

  • Wenink PW, Groen AF, Roelke-Parker ME, Prins HHT (1998) African buffalo maintain high genetic diversity in the major histocompatibility complex in spite of historically known population bottlenecks. Mol Ecol 7:1315–1322

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H (2004) No evidence of an MHC-bases female mating preference in great reet warblers. Mol Ecol 13:2465–2470

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Boyse EA, Mike V et al (1976) Control of mating preferences in mice by genes in the major histocompatibility complex. J Exp Med 144:1324–1335

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Yamaguchi M, Baranoski L et al (1979) Recognition among mice: evidence from the use of Y-maze differentially scented by congenic mice of different major histocompatibility types. J Exp Med 150:755–760

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Singer A, Beauchamp GK (1998) Origin, functions and chemistry of H-2 regulated odorants. Genetica 104:235–240

    Article  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Cabios 13:555–556

    PubMed  CAS  Google Scholar 

  • Zeh JA, Zeh DW (1996) The evolution of polyandry I: intragenomic conflict and genetic incompatibility. Proc R Soc Lond B 263:1711–1717

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the “Commission Tripartite” of the Malagasy Government, the “Laboratoire de Primatologie et des Vertébrés de l´Université d´Antananarivo”, the “Parc Botanique et Zoologique de Tsimbazaza”, the “Ministère pour la Production Animale” and the “Département des Eaux et Forêts” for their collaboration and permission to work in Madagascar. Many thanks to the ‘Centre de Formation Professionnelle Forestière de Morondava’, B. Rakotosamimanana, R. Rasoloarison, and L. Razafimanantsoa for logistical support, and to the German Primate Centre (DPZ) for the opportunity to work at the field station. We thank I. Tomaschweski for technical assistance in the lab, A. Hapke and H. Zischler for introducing microsatellite analyses and J. Ganzhorn for unflagging support. Two anonymous reviewers provided helpful comments on a former version of this manuscript. This study was made possible by the German Science Foundation (So 428/4-1, So 428/4-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwensow, N., Fietz, J., Dausmann, K. et al. MHC-associated mating strategies and the importance of overall genetic diversity in an obligate pair-living primate. Evol Ecol 22, 617–636 (2008). https://doi.org/10.1007/s10682-007-9186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-007-9186-4

Keywords

Navigation