Skip to main content
Log in

Mining for heat-stress responsive genes by large scale gene expression data from Betula luminifera

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Global average temperature has been predicted to rise by 1.8–4.0 °C within this century, accompanied by an increase in the magnitude and frequency of high-temperature events. Developing new cultivars better adapted to high temperature is essential for forestry ecosystems. Analyzing smooth-bark birch (Betula luminifera) gene expression profiles in response to heat stress is critical to understanding how birch manages heat stress, and provides vital information to improve thermoresistance for stable wood production. In this study, the leaf transcriptomics of B. luminifera were evaluated, thus up- and down-regulated genes were identified under heat stress through digital gene expression analysis. Expression patterns of 17 related genes of two genotypes following exposure to heat stress were compared. A total of 867 differentially expressed genes were identified, including 447 upregulated genes and 420 downregulated genes under heat stress, while 10 genes and 58 genes were detected only in control and heat-stress leaves, respectively. Among them, Hsfs, HSPs, DREB2, Cpn60-β2, ATP9 and other genes involved in the response to heat stress displayed quantitative differences in expression between the genotypes. The expression levels of the transcription factors MybC2-L1 and MYC1 were repressed significantly under heat stress. These results showed that a panoply of genes were induced by heat stress, while the expression of many genes were reduced or off in the presence of excessively high temperatures. It can be speculated that the distinct expression levels between genotypes in response to heat stress underlie their different capacities to resist high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brautigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, Fluch S, Fraga MF, Guevara MA, Abarca D, Johnsen O, Maury S, Strauss SH, Campbell MM, Rohde A, Diaz-Sala C, Cervera MT (2013) Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 3(2):399–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Camejo D, Rodriguez P, Morales MA, Dell’Amico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162(3):281–289

    Article  CAS  PubMed  Google Scholar 

  • Ferreira S, Hjernø K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P, Pais MS (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98(2):361–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) heat shock proteins in toxicology: how close and how far? Life Sci 86(11–12):377–384

    Article  CAS  PubMed  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf K-D (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23(2):741–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hichri I, Heppel SC, Pillet J, Leon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J (2010) The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant 3(3):509–523

    Article  CAS  PubMed  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62(8):2465–2483

    Article  CAS  PubMed  Google Scholar 

  • Huang HH, Jiang C, Tong ZK, Cheng LJ, Zhu MY, Lin EP (2014) Eight distinct cellulose synthase catalytic subunit genes from Betula luminifera are associated with primary and secondary cell wall biosynthesis. Cellulose 21(4):2183–2198

    Article  CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagne D, Rowan DD, Troggio M, Iglesias I, Allan AC (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34(7):1176–1190

    Article  PubMed  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Miho I, Nobutaka M, Masaru OT (2011) Arabidopsis HsfB1 and HsfB2b Act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol 157:1243–1254

    Article  Google Scholar 

  • Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47(9):785–795

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):118–125

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic 105(3):319–330

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Method 5(7):621–628

    Article  CAS  Google Scholar 

  • Nakaminami K, Matsui A, Shinozaki K, Seki M (2012) RNA regulation in plant abiotic stress responses. Biochim Biophys Acta (BBA) Gene Regul Mech 1819(2):149–153

    Article  CAS  Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf K-D (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell stress chaperon 6(3):177

    Article  CAS  Google Scholar 

  • Olsen KM, Slimestad R, Lea US, Brede C, Lovdal T, Ruoff P, Verheul M, Lillo C (2009) Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies. Plant Cell Environ 32(3):286–299

    Article  CAS  PubMed  Google Scholar 

  • Port M, Tripp J, Zielinski D, Weber C, Heerklotz D, Winkelhaus S, Bublak D, Scharf KD (2004) Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol 135(3):1457–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64(11):3201–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell RM, Mobarhan S, Underwood BA, Wallingford J, Mathieson RD, Almidani MH (1981) Evaluation of the relative dose-response (Rdr) test for vitamin-a nutriture in cirrhotics. Am J Clin Nutr 34(4):647

    Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103(49):18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Doring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    Article  CAS  PubMed  Google Scholar 

  • Skylas D, Cordwell S, Hains P, Larsen M, Basseal D, Walsh B, Blumenthal C, Rathmell W, Copeland L, Wrigley C (2002) Heat shock of wheat during grain filling: proteins associated with heat-tolerance. J Cereal Sci 35(2):175–188

    Article  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am J Bot 99(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Nakanishi H, Bower J, Yoder DW, Osteryoung KW, Miyagishima SY (2009) Plastid chaperonin proteins Cpn60 alpha and Cpn60 beta are required for plastid division in Arabidopsis thaliana. BMC Plant Biol 9:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Valcu CM, Lalanne C, Plomion C, Schlink K (2008) Heat induced changes in protein expression profiles of Norway spruce (Picea abies) ecotypes from different elevations. Proteomics 8(20):4287–4302

    Article  CAS  PubMed  Google Scholar 

  • von Koskull-Doring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12(10):452–457

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad M (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  PubMed  Google Scholar 

  • Xue G-P, Drenth J, McIntyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66(3):1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xu M, Luo Q, Wang J, Li H (2014) De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing. Gene 534(2):155–162

    Article  CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li J, Liu B, Zhang L, Chen J, Lu M (2013) Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses. BMC Genom 14:532

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from the Zhejiang Province Science and Technology Support Program (2012C12908-8) and Scientific Research & Development Fund of Zhejiang A&F University (2012FR078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Kang Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JH., Wu, J., Huang, HH. et al. Mining for heat-stress responsive genes by large scale gene expression data from Betula luminifera . Euphytica 210, 245–257 (2016). https://doi.org/10.1007/s10681-016-1718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1718-y

Keywords

Navigation