Skip to main content
Log in

Integrative detection and verification of QTL for plant traits in two connected RIL populations of high-oil maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Plant traits play an important role in determining plant density and final grain yield. In this study, two related RIL populations developed from two crosses between one high-oil maize inbred and two normal dent maize inbreds were evaluated for 13 plant traits under four environments. QTL were detected within population and in joint-population analysis, and compared with the result obtained in the two F2:3 generations. Our main objective was to find identical QTL and key genetic regions valuable in further research. Totally, 318 single-population QTL, 142 pairs of digenic epistasis and 412 joint-population QTL were detected. Joint-population analysis could detect much more QTL and increase the accuracy of QTL localization. Consistent QTL across generations, environments and analysis methods were observed for five traits at four bins. QTL for plant height and ear height at bin 3.05, and for leaf area at bin 6.03–6.04 had the highest consistency across most situations. These QTL with high consistency were worthy to be put into marker-assisted selection in trait improvement and to construct near isogenic lines in further research. Maize breeding could be improved by integrating marker assisted selection and phenotypic selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CIM:

Composite interval mapping

EH:

Ear height

IHO:

Illinois high oil

ILO:

Illinois low oil

JICIM:

Joint inclusive composite interval mapping

LA:

Leaf angle

LAA:

Leaf area

LL:

Leaf length

LNE:

Number of leaves above the top ear

LOD:

Logarithm of odds

LOV:

Leaf orientation value

LW:

Leaf width

MAS:

Marker-assisted selection

MIM:

Multiple interval mapping

NAM:

Nested association mapping

NILs:

Near isogenic lines

PH:

Plant height

QTL:

Quantitative trait locus/loci

SD:

Stalk diameter

SSR:

Simple sequence repeat

TB:

Number of tassel branches

TH:

Top height

THPH:

The ratio of top height to plant height

TL:

Tassel length

References

  • Agrama HAS, Moussa ME (1996) Mapping QTL in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91:89–97

    Article  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Austin DF, Lee M (1996) Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome 39:957–968

    Article  CAS  PubMed  Google Scholar 

  • Austin DF, Lee M, Veldboom LR (2001) Genetic mapping in maize with hybrid progeny across testers and generations: plant height and flowering. Theor Appl Genet 102:163–176

    Article  CAS  Google Scholar 

  • Beavis WD, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci. Theor Appl Genet 83:141–145

    Article  CAS  PubMed  Google Scholar 

  • Benitez JA, Gernat AG, Murillo JG, Araba M (1999) The use of high oil corn in broiler diets. Poultry Sci 78:861–865

    Article  CAS  Google Scholar 

  • Berke TG, Rocheford TR (1995) Quantitative trait locus for flowering plant and ear height and kernel traits in maize. Crop Sci 35:1542–1549

    Article  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  CAS  PubMed  Google Scholar 

  • Cao YG, Wang JY, Wang SC, Wei YL, Lu J, Xie YJ, Dai JR (2000) Construction of a genetic map and location of quantitative trait loci for dwarf trait in maize by RFLP markers. Chin Sci Bull 45:247–250

    Article  CAS  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait locus meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Flint-Garcia SA, Jampatong C, Darrah LL, McMullen MD (2003) Quantitative trait locus analysis of stalk strength in four maize populations. Crop Sci 43:13–22

    Article  CAS  Google Scholar 

  • Fu JF (2008) Study on QTL stability across genetic backgrounds and environments for plant traits and their genetic correlations in maize. Ms. D. thesis, Henan Agricultural University Zhengzhou

  • Gao SB, Zhao MJ, Lan H, Zhang ZM (2007) Identification of QTL associated with tassel branch number and total tassel length in maize. Hereditas 29:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Henderson CR (1953) Estimation of variance and covariance. Biometrics 9:226–252

    Article  Google Scholar 

  • Jiang HY, Chen SJ, Gao LF, Xing JM, Song TM, Dai JR (2005) Analysis on heterotic groups and heterotic patterns of high oil corn inbred lines. Acta Agron Sinica 31:361–367

    Google Scholar 

  • Kao CH, Zeng ZB, Robert DT (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khavkin E, Coe EH (1997) Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays L). Theor Appl Genet 95:343–352

    Article  CAS  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH (2010) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121:951–959

    Article  CAS  PubMed  Google Scholar 

  • Lambert RJ (2001) High-oil corn hybrids. In: Hallauer AR (ed) Specialty corns. CRC, Boca Raton, pp 131–154

    Google Scholar 

  • Lambert RJ, Alexander DE, Mollring EL, Wiggens B (1997) Selection for increased oil concentration in maize kernels and associated changes in several kernel traits. Maydica 42:39–43

    Google Scholar 

  • Lan JH, Chu D (2005) Study on the genetic basis of plant height and ear height in maize (Zea mays L.) by QTL dissection. Hereditas 27:925–934

    CAS  PubMed  Google Scholar 

  • Li YL, Dong YB, Niu SZ, Cui DQ (2007) The genetic relationship among plant-height traits found using multiple-trait QTL mapping of a dent corn and popcorn cross. Genome 50:357–364

    Article  PubMed  Google Scholar 

  • Li YL, Dong YB, Niu SZ, Cui DQ, Wang YZ, Liu YY, Wei MG, Li XH (2008) Identification of agronomically favorable quantitative trait loci alleles from a dent corn inbred Dan232 using advanced backcross QTL analysis and comparison with the F2:3 population in popcorn. Mol Breed 21:1–14

    Article  CAS  Google Scholar 

  • Li YL, Li XH, Li JZ, Fu JF, Wang YZ, Wei MG (2009) Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize. Euphytica 169:273–284

    Article  Google Scholar 

  • Li HH, Zhang LY, Wang JK (2010) Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sinica 36:918–931

    Article  Google Scholar 

  • Li HH, Bradbury P, Ersoz E, Buckler ES, Wang JK (2011) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE 6:e17573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lima MLA, Jr CL, Souza DAV, Bento AP, Souza LA Carlini-Garcia (2006) Mapping QTL for grain yield and plan t traits in a tropical maize population. Mol Breed 17:227–239

    Article  Google Scholar 

  • Liu WX, Reif JC, Ranc N, Porta GD, Würschum T (2012) Comparison of biometrical approaches for QTL detection in multiple segregating families. Theoret Appl Genet 125:987–998

    Article  Google Scholar 

  • Lizaso JI, Batchelor WD, Westgate ME, Echarte L (2003) Enhancing the ability of CERES-Maize to compute light capture. Agric Syst 76:293–311

    Article  Google Scholar 

  • Lu M, Zhou F, Xie CX, Li MS, Xu YB, Marilyn W, Zhang SH (2007) Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas 29:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Meghji MR, Dudley JW, Lambea RJ, Sprague GE (1984) Inbreeding depression, inbred and hybrid grain yields, and other traits of maize genotypes representing three eras. Crop Sci 24:545–549

    Article  Google Scholar 

  • Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002) Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize. Crop Sci 42:1902–1909

    Article  CAS  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang ZW, Costich DE, Buckler ED (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pepper GE, Pearce RB, Mock JJ (1977) Leaf orientation and yield of maize. Crop Sci 17:883–886

    Article  Google Scholar 

  • Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48:601–613

    Article  CAS  PubMed  Google Scholar 

  • Sibov ST, de Souza JRCL, Garcia AAF, Silva AR, Garcia AF, Mangolin CA, Benchimol LL, Souza AP (2003) Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture. Hereditas 139:107–115

    Article  PubMed  Google Scholar 

  • SPSS software (2010) SPSS Inc., Chicago. http://www.spss.com/worldwide. Accessed 20 Mar 2010

  • Steinhoff J, Liu WX, Maurer HP, Wurschum T, Longin CFH, Ranc N, Reif JC (2011) Multiple-line cross quantitative trait locus mapping in European elite maize. Crop Sci 51:2505–2516

    Article  Google Scholar 

  • Tang H, Yan JB, Huang YQ, Zheng YL, Li JS (2005) QTL mapping of five agronomic Traits in maize. Acta Genetica Sinica 32:203–209

    PubMed  Google Scholar 

  • Tang JH, Teng WT, Yan JB, Ma XQ, Meng YJ, Dai JR, Li JS (2007) Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica 155:117–124

    Article  CAS  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Omblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Yao J, Zhang ZF, Zheng YL (2006) The comparative analysis based on maize integrated QTL map and meta-analysis of plant height QTLs. Chin Sci Bull 51:2219–2230

    Article  CAS  Google Scholar 

  • Wang YZ, Li JZ, Li YL, Wei MG, Li XH, Fu JF (2010) QTL detection for grain oil and starch content and their associations in two connected F2:3 populations in high-oil maize. Euphytica 174:239–252

    Article  CAS  Google Scholar 

  • Wassom JJ, Wong JC, Martinez E, King JJ, DeBaene J, Hotchkiss JR, Mikkilineni V, Bohn MO, Rocheford TR (2008) QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in Illinois High Oil × B73 backcross-derived lines. Crop Sci 48:243–252

    Article  Google Scholar 

  • Wei MG, Fu JF, Li XH, Wang YZ, Li YL (2009) Influence of dent corn genetic backgrounds on QTL detection for plant-height traits and their relationships in high-oil maize. J Appl Genet 50:225–234

    Article  CAS  PubMed  Google Scholar 

  • Yan JB, Tang H, Huang YQ, Shi YG, Li JS, Zheng YL (2003) Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chin Sci Bull 48:1959–1964

    Article  Google Scholar 

  • Yang JP, Rong TZ, Xiang DQ, Tang HT, Huang LJ, Dai JR (2005) QTL mapping of quantitative traits in maize. Acta Agron Sinica 31:188–196

    CAS  Google Scholar 

  • Yang GH, Li YL, Wang QL, Zhou YG, Zhou Q, Shen BT, Zhang FF, Liang XJ (2012) Detection and integration of quantitative trait loci for grain yield components and oil content in two connected recombinant inbred line populations of high-oil maize. Mol Breed 29:313–333

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait locus. Genetics 136:1457–1468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang ZM, Zhao MJ, Rong TZ, Pan GT (2007) SSR linkage map construction and QTL identification for plant height in maize (Zea mays L.). Acta Agron Sinica 33:341–344

    CAS  Google Scholar 

  • Zheng PZ, Allen WB, Roesler K, Williams ME, Zhang SR, Li JM, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Mitchell C, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly thank China Agricultural University for providing us the high-oil maize inbred line GY220. We are grateful to Jiankang Wang and Huihui Li in helping us for joint-population QTL analysis. This work was funded by the Plan for Scientific Innovation Talent of Henan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G.H., Dong, Y.B., Li, Y.L. et al. Integrative detection and verification of QTL for plant traits in two connected RIL populations of high-oil maize. Euphytica 206, 203–223 (2015). https://doi.org/10.1007/s10681-015-1502-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1502-4

Keywords

Navigation