Skip to main content
Log in

Exploiting natural variation in exotic germplasm for increasing provitamin-A carotenoids in tropical maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The nutritional value and health benefits derived from carotenoids have prompted increased investment in breeding crop varieties with elevated carotenoid levels for areas where crops like maize with low nutrient density are consumed in large quantities. Twelve exotic donor lines of high β-carotene were crossed to seven elite tropical yellow or orange lines and the F1s were backcrossed to the same or different elite line. Ninety-eight lines derived from these backcrosses (BC), seven recurrent parents, and 24 adapted lines derived from other source populations were included in a trial grown at Ibadan in Nigeria for three years. Carotenoid analyses of samples harvested from this trial found significant differences in accumulating provitamin-A and other carotenoids among lines, which were consistently expressed across years. The lines also displayed distinct carotenoid profiles. Among the best 25 inbred lines containing 5.0–16.6 μg g−1 β-carotene and 8.0–17.4 μg g−1 pro-vitamin A, 24 were BC-derived lines and one was derived from a bi-parental cross of tropical yellow elite lines. The best BC-derived lines accumulated 23–313 % more β-carotene and 32–190 % more provitamin-A than the recurrent parents. These BC-derived lines may be valuable resources for favorable alleles to develop maize varieties with high provitamin-A and for genetic studies to understand the underlying mechanisms regulating carotenoid biosynthesis. These results illustrate the effectiveness of exploiting natural allelic diversity existing in exotic lines through backcrossing combined with visual selection for bright yellow to orange kernel color with semi-flint to flint kernel texture in boosting provitamin-A to a new level in tropical maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguayo VM, Baker SK (2005) Vitamin A deficiency and child survival in sub-Saharan Africa: a reappraisal of challenges and opportunities. Food Nutr Bull 26:348–355

    PubMed  Google Scholar 

  • Ali Q, Ashraf M, Anwar F (2010) Seed composition and seed oil antioxidant activity of maize under water stress. J Am Oil Chem Soc 87:1179–1187

    Article  CAS  Google Scholar 

  • Azmach G, Gedil M, Menkir A, Spillane C (2013) Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Bio 13:227

    Article  Google Scholar 

  • Babu R, Rojas NP, Gao S, Yan J, Pixley K (2013) Validation of the effects of molecular marker polymorphisms in lcye and crtrb1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berardo N, Brenna OV, Amato A, Valoti P, Pisacane V, Motto M (2004) Carotenoid concentrations among maize genotypes measured by near infrared reflectance spectroscopy (NIRS). Innov Food Sci Emerg Technol 5:393–398

    Article  CAS  Google Scholar 

  • Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, Mathers C, Rivera J (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371(9608):243–260. doi:10.1016/S0140-6736(07)61690-0

    Article  PubMed  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(1):S31–S40

    PubMed  Google Scholar 

  • Bramley PM (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot 53:2107–2113

    Article  CAS  PubMed  Google Scholar 

  • Brunson AM, Quackenbush FW (1962) Breeding corn with high provitamin A in the grain. Crop Sci 2:344–347

    Article  CAS  Google Scholar 

  • Burt AJ, Grainger CM, Smid MP, Shelp BJ, Lee EA (2011) Allele mining of exotic maize germplasm to enhance macular carotenoids. Crop Sci 51:991–1004

    Article  Google Scholar 

  • Chander S, Meng Y, Zhang Y, Yan J, Li J (2008) Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. J Agric Food Chem 56:6506–6511

    Article  CAS  PubMed  Google Scholar 

  • Chenard CH, Kopsell DA, Kopsell DE (2005) Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. J Plant Nutr 28:285–297

    Article  CAS  Google Scholar 

  • Combs GF (2012) The vitamins: fundamental aspects in nutrition and health, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Cox TS, Frey KJ (1984) Genetic variation for grain yield and related traits in a sorghum introgression population. Theor Appl Genet 68:145–153

    Article  CAS  PubMed  Google Scholar 

  • Cox TS, House LR, Frey KJ (1984) Potential of wild germ plasm for increasing yield of grain sorghum. Euphytica 33:673–684

    Article  Google Scholar 

  • Debier C, Larondelle Y (2005) Vitamins A and E: metabolism, roles and transfer to offspring. Br J Nutr 93:153–174

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  PubMed  Google Scholar 

  • Dudley JW (1982) Theory for transfer of alleles. Crop Sci 22:631–637

    Article  Google Scholar 

  • Eaton DL, Busch RH, Youngs BL (1986) Introgression of unadapted germ plasm into adapted spring wheat. Crop Sci 26:473–477

    Article  Google Scholar 

  • Efeoğlua B, Ekmekçib Y, Çiçekb N (2009) Physiological responses of three maize cultivars to drought stress and recovery. S Afr J Bot 75:34–42

    Article  Google Scholar 

  • Egesel CO, Wong JC, Lambert RJ, Rocheford TR (2003) Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci 43:818–823

    Article  CAS  Google Scholar 

  • Farré G, Sanahuja G, Naqvi S, Bai C, Capell T (2010) Travel advice on the road to carotenoids in plants. Plant Sci 179:28–48

    Article  Google Scholar 

  • Fierce Y, de Morais V, Piantedosi M, Wyss R, Blaner AWS, Paik J (2008) In vitro and in vivo characterization of carotenoid synthesis from beta-carotene. Arch Biochem Biophys 472:126–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  • Goodman MM (1999) Broadening the genetic diversity in maize breeding by use of exotic germplasm. In: Coors JG, Pandy S (eds) Genetics and exploitation of heterosis in crops. ASA-CSSA Inc., Madison, pp 139–148

    Google Scholar 

  • Harjes CE, Rocheford TR, Bai L, Brutnell TP, Vallabhaneni R, Williams M, Wurtzel ET, Kandianis CB, Sowinski SG, Stapleton AE, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holland B, Carolina N, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Howe JA, Tanumihardjo SA (2006) Evaluation of analytical methods for carotenoid extraction from biofortified maize (Zea mays L.). J Agric Food Chem 54(21):7992–7997

    Article  CAS  PubMed  Google Scholar 

  • Institute of Medicine (2012) Dietary reference intakes (DRIs): estimated average requirements. Food and Nutrition Board, Institute of Medicine, Washington, DC. http://www.iom.edu/Activities/Nutrition/SummaryDRIs/~/media/Files/Activity%20Files/Nutrition/DRIs/5_Summary%20Table%20Tables%201-4.pdf

  • Islam SN, Paul C, Buckler ES, Rochford T (2004) Genetic and diversity studies on carotenoids (provitamin A) in maize. In: Fortieth Annual Illinois Corn Breeders’ School. University of Illinois at Urban-Champaign pp 77–107

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed Central  PubMed  Google Scholar 

  • Kandianis CB, Stevens R, Liu W, Palacios N, Montgomery K, Pixley K, White WS, Rocheford T (2013) Genetic architecture controlling variation in grain carotenoid composition and concentrations in two maize populations. Theor Appl Genet 126:2879–2895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kendall MG (1962) Rank correlation methods, 3rd edn. Griffin, London

    Google Scholar 

  • Kopsell DA, Kopsell DE (2008) Genetic and environmental factors affecting plant lutein/zeaxanthin. AgroFOOD Ind Hi-tech 19(2):44–46

    CAS  Google Scholar 

  • Kurilich AC, Juvik JA (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem 47:1948–1955

    Article  CAS  PubMed  Google Scholar 

  • Lawrence PK, Frey KJ (1975) Backcross variability for grain yield in oat species crosses (Avena sativa L × A. sterillis L). Euphytica 24:77–85

    Article  Google Scholar 

  • Leuenberger MG, Engeloch-Jarret C, Woggon WD (2001) The reaction mechanism of the enzyme-catalyzed central cleavage of beta-carotene to retinal. Angew Chem Int Ed 40:2613–2617

    Article  Google Scholar 

  • Menkir A, Liu W, White WS, Maziya-Dixon B, Rocheford T (2008) Carotenoid diversity in tropical adapted yellow maize inbred lines. Food Chem 109:521–529

    Article  CAS  Google Scholar 

  • Menkir A, Gedil M, Tanumihardjo SA, Adepoju A, Bossey B (2014) Carotenoid accumulation and agronomic performanca of maize hybrids involving parental combinations from different marker-based groups. Food Chem 148(1):131–137

    Article  CAS  PubMed  Google Scholar 

  • Moster JB, Quackenbush FW (1952) The effects of temperature and light on the carotenoids of seedlings grown from three corn hybrids. Arch Biochem Biophys 38:297–303

    Article  CAS  PubMed  Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S, Bhat JS, Prasanna BM, Gupta HS (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase Allele. PLoS ONE 9(12):e113583. doi:10.1371/journal.pone.0113583

    Article  PubMed Central  PubMed  Google Scholar 

  • Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Kim E, Cepela J, Mateos-Hernandez M, Buell CR, Buckler ES, DellaPenna D, Gore MA, Rocheford TR (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:88–105

    Article  Google Scholar 

  • Quackenbush FW, Firch JG, Brunson AM, House LR (1966) Carotenoid, oil, and tocopherol content of corn inbreds. Cer Chem 40:251–259

    Google Scholar 

  • Rice AL, West KP, Black RE Jr (2004) Vitamin A deficiency. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors, vol 1. World Health Organ, Geneva

    Google Scholar 

  • SAS Institute (2008) SAS system for Windows. Release 9.2. SAS Institute Inc Cary North Carolina USA

  • Senete CT, de Guimaraes PEO, de Paes MCD, Souza JC (2011) Diallel analysis of maize inbred lines for carotenoids and grain yield. Euphytica 182:395–404

    Article  CAS  Google Scholar 

  • Sommer A (2008) Vitamin A deficiency and clinical disease: an historical overview. J Nutr 138:1835–1839

    CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107

    Article  CAS  PubMed  Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2014) Formation of heterotic groups and understanding genetic effects in a provitamin A biofortified maize breeding program. Crop Sci 54:14–24

    Article  Google Scholar 

  • Vallabhaneni R, Wurtzel E (2009) Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiol 150:562–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallabhaneni R, Gallagher CE, Licciardello N, Cuttriss AJ, Quinlan RF, Wurtzel ET (2009) Metabolite sorting of a germplasm collection reveals the hydroxylase3 locus as a new target for maize provitamin A biofortification. Plant Physiol 151:1635–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc JASA 58:236–244

    Article  Google Scholar 

  • West KP Jr, Darnton-Hill I (2008) Vitamin A deficiency. In: Semba RD, Bloem MW (eds) Nutrition and health in developing countries SE—13. Nutrition and health seriesHumana Press, Totowa, pp 377–434. doi:10.1007/978-1-59745-464-3_13

    Chapter  Google Scholar 

  • WHO/FAO (2004) Vitamin A and mineral requirements in human nutrition. 2nd edition. Report of a joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements, Bangkok, Thailand, 21–30 September 1998

  • Wong JC, Lambert RJ, Wurtzel ET, Rocheford TR (2004) QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–359

    Article  CAS  PubMed  Google Scholar 

  • Wurtzel ET, Cuttriss A, Vallabhaneni R (2012) Maize provitamin A carotenoids, current resources, and future metabolic engineering challenges. Front Plant Sci 3:1–12

    Article  Google Scholar 

  • Yan JB, Kandianis CB, Harjes CE, Bai L, Kim E, Yang XH, Skinner D, Fu ZY, Mitchell S, Li Q, Fernandez MGS, Zaharieva M, Babu R, Fu Y, Palacios N, Li JS, DellaPenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet 42:322–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was conducted at the International Institute of Tropical Agriculture and financed by the HarvestPlus Challenge Program. The authors express their appreciation to all staff that participated during planting and processing of seed samples harvested from this trial at Ibadan for three years and Christopher Davis for overseeing the carotenoid analyses of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abebe Menkir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menkir, A., Rocheford, T., Maziya-Dixon, B. et al. Exploiting natural variation in exotic germplasm for increasing provitamin-A carotenoids in tropical maize. Euphytica 205, 203–217 (2015). https://doi.org/10.1007/s10681-015-1426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1426-z

Keywords

Navigation