Skip to main content
Log in

Quantitative trait locus mapping for seed dormancy in different post-ripening stages in a Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is a hexaploid wheat resource distributed only in Tibet that has an interesting type of seed dormancy in addition to hulled glumes and brittle spikelets. A whole-genome linkage map of T. aestivum ssp. tibetanum was constructed for a population of 186 recombinant inbred lines using 645 diversity array technology (DArT) markers, 127 simple sequence repeat markers and three R-1 genotyping markers. Seed dormancy was evaluated at five post-ripening stages from 2010 to 2013. Comprehensive quantitative trait locus (QTL) mapping by inclusive composite interval mapping analysis identified seven QTLs for seed dormancy, designated as Qsd.sau-1B, Qsd.sau-3A, Qsd.sau-3B, Qsd.sau-3D, Qsd.sau-4A1, Qsd.sau-4A2, and Qsd.sau-7A, on chromosomes 1BL, 3AL, 3BL, 3DL, 4AS, 4AL, and 7AL, which explained 8.9, 7.2, 10.8, 7.0, 11.4, 9.4, and 12.7 % of phenotypic variation, respectively. Qsd.sau-4A1 and Qsd.sau-7A have only rarely been reported in domesticated common wheat but were prominent in T. aestivum ssp. tibetanum accession Q1028. Qsd.sau-4A1 was associated with intense, short-duration dormancy and was recognized as an ideal QTL for wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson JA, Sorrells ME, Tanksley SD (1993) RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci 33:453-459

  • Chen C-X, Cai S-B, Bai G-H (2008) A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed 21(3):351–358

    Article  CAS  Google Scholar 

  • Flintham J, Adlam R, Bassoi M, Holdsworth M, Gale M (2002) Mapping genes for resistance to sprouting damage in wheat. Euphytica 126(1):39–45

    Article  CAS  Google Scholar 

  • Gerjets T, Scholefield D, Foulkes MJ, Lenton JR, Holdsworth MJ (2010) An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. J Exp Bot 61(2):597–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Groos C, Gay G, Perretant M-R, Gervais L, Bernard M, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross. Theor Appl Genet 104(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Himi E, Maekawa M, Miura H, Noda K (2011) Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor Appl Genet 122(8):1561–1576

    Article  CAS  PubMed  Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for pre-harvest sprouting in synthetic backcross-derived wheat lines. Genetics 178(3):1725–1736. doi:10.1534/genetics.107.084939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaiswal V, Mir R, Mohan A, Balyan H, Gupta P (2012) Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 188(1):89–102

    Article  CAS  Google Scholar 

  • Kato K, Nakamura W, Tabiki T, Miura H, Sawada S (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102(6–7):980–985

    Article  CAS  Google Scholar 

  • Kulwal PL, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genom 4(2):94–101. doi:10.1007/s10142-004-0105-2

    Article  CAS  Google Scholar 

  • Kulwal P, Mir R, Kumar S, Gupta P (2011) QTL analysis and molecular breeding for seed dormancy and pre-harvest sprouting tolerance in bread wheat. J Plant Biol 37:59–74

    Google Scholar 

  • Kulwal P, Ishikawa G, Benscher D, Feng Z, Yu L-X, Jadhav A, Mehetre S, Sorrells ME (2012) Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet 125(4):793–805

    Article  CAS  PubMed  Google Scholar 

  • Lan XJ, Wei YM, Liu DC, Yan ZH, Zheng YL (2005) Inheritance of seed dormancy in Tibetan semi-wild wheat accession Q1028. J Appl Genet 46(2):133–138

    PubMed  Google Scholar 

  • Liu S, Bai G, Cai S, Chen C (2011) Dissection of genetic components of pre-harvest sprouting resistance in white wheat. Mol Breed 27(4):511–523

    Article  Google Scholar 

  • Lohwasser U, Röder MS, Börner A (2005) QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143:247–249

  • Lunn G, Kettlewell P, Major B, Scott R (2002) Variation in dormancy duration of the UK wheat cultivar Hornet due to environmental conditions during grain development. Euphytica 126(1):89–97

    Article  Google Scholar 

  • Mac Key J, Derera N (1989) Seed dormancy in wild and weedy relatives of cereals. In: Derera DF (ed) Preharvest field sprouting in cereals. CRC Press, Boca Raton, pp 15–25

    Google Scholar 

  • Maccaferri M, Francia R, Ratti C, Rubies-Autonell C, Colalongo C, Ferrazzano G, Tuberosa R, Sanguineti MC (2012) Genetic analysis of soil-borne cereal mosaic virus response in durum wheat: evidence for the role of the major quantitative trait locus QSbm. ubo-2BS and of minor quantitative trait loci. Mol Breed 29(4):973–988

    Article  CAS  Google Scholar 

  • Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111(7):1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Mohan A, Kulwal P, Singh R, Kumar V, Mir RR, Kumar J, Prasad M, Balyan H, Gupta P (2009) Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica 168(3):319–329

    Article  CAS  Google Scholar 

  • Mori M, Uchino N, Chono M, Kato K, Miura H (2005) Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet 110(7):1315–1323. doi:10.1007/s00122-005-1972-1

    Article  CAS  PubMed  Google Scholar 

  • Munkvold JD, Tanaka J, Benscher D, Sorrells ME (2009) Mapping quantitative trait loci for pre-harvest sprouting resistance in white wheat. Theor Appl Genet 119(7):1223–1235. doi:10.1007/s00122-009-1123-1

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Chono M, Abe F, Miura H (2010) Mapping a diploid wheat abscisic acid 8′-hydroxylase homologue in the seed dormancy QTL region on chromosome 5Am. Euphytica 171(1):111–120

    Article  CAS  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23(9):2315–3229

    Article  Google Scholar 

  • Ogbonnaya FC, Imtiaz M, Ye G, Hearnden PR, Hernandez E, Eastwood RF, van Ginkel M, Shorter SC, Winchester JM (2008) Genetic and QTL analyses of seed dormancy and pre-harvest sprouting resistance in the wheatgerm plasm CN10955. Theor Appl Genet 116(7):891–902. doi:10.1007/s00122-008-0712-8

    Article  CAS  PubMed  Google Scholar 

  • Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H (2003) Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet 106(8):1491–1496. doi:10.1007/s00122-003-1208-1

    CAS  PubMed  Google Scholar 

  • Ren X, Lan X, Liu D, Wang J, Zheng Y (2008) Mapping QTLs for pre-harvest sprouting tolerance on chromosome 2D in a synthetic hexaploid wheat × common wheat cross. J Appl Genet 49(4):333–341

    Article  PubMed  Google Scholar 

  • Singh R, Matus-Cádiz M, Båga M, Hucl P, Chibbar RN (2010) Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica 174(3):391–408

    Article  CAS  Google Scholar 

  • Sood S, Kuraparthy V, Bai G, Gill BS (2009) The major thresh ability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theor Appl Genet 119(2):341–351. doi:10.1007/s00122-009-1043-0

    Article  PubMed  Google Scholar 

  • Torada A, Koike M, Ikeguchi S, Tsutsui I (2008) Mapping of a major locus controlling seed dormancy using backcrossed progenies in wheat (Triticum aestivum L.). Genome 51(6):426–432

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

  • Wang D, Zhu J, Li Z, Paterson A (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99(7–8):1255–1264

    Article  Google Scholar 

  • Wang J, Li H, Zhang L, Li C, Meng L (2012) QTL IciMapping version 3.2. http://www.isbreeding.net

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101(26):9915–9920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the State Key Program of National Natural Science of China (Grant No. 31230053) and the National Natural Science Foundation of China (30471088; 30370883).

Conflict of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Jin Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, YF., Wang, JR., Luo, W. et al. Quantitative trait locus mapping for seed dormancy in different post-ripening stages in a Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao). Euphytica 203, 557–567 (2015). https://doi.org/10.1007/s10681-014-1266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1266-2

Keywords

Navigation