Skip to main content
Log in

Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Development of pea cultivars with improved resistance to ascochyta blight disease has been hindered due to lack of strong resistance. The objective of this study was to identify single nucleotide polymorphisms (SNPs) within the candidate genes associated with ascochyta blight resistance that can be used to aid selection. A total of 54 diverse Pisum sativum accessions from eastern Europe, western Europe, Australia, and Canada were genotyped and phenotyped for disease reaction. Fifteen SNPs were detected within candidate genes associated with reaction to ascochyta blight, of which SNP loci PsDof1p308 and RGA-G3Ap103 had significant associations with ascochyta blight scores. Further, PsDof1p308 showed significant association with disease score when tested on a recombinant inbred line population (PR-15) developed from a cross between ‘CDC 1-2347-144’ and ‘CDC Meadow’. SNPs identified in this study have the potential to aid selection of pea cultivars with improved disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Carrillo E, Satovic Z, Aubert G, Boucherot K, Rubiales D, Fondevilla S (2014) Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep 33:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Chiang CC, Hadwiger LA (1991) The Fusarium solani-induced expression of a pea gene family encoding high cysteine content proteins. Mol Plant Microb Interact 4:324–331

    Article  CAS  Google Scholar 

  • Clulow SA, Lewis BG, Matthews P (1991) A pathotype classification for Mycosphaerella pinodes. J Phytopathol 131:322–332

    Article  Google Scholar 

  • Cuppen E (2007) Genotyping by allele-specific amplification (KASPar). Cold Spring Harb Protocols, pp 172–173.

  • Dirlewanger E, Isaac P, Ranade S, Belajouza M, Cousin R, Devienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Article  CAS  PubMed  Google Scholar 

  • Fondevilla S, Avila CM, Cubero JI, Rubiales D (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed 124:313–315

    Article  Google Scholar 

  • Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum. Mol Breed 21:439–454

    Article  CAS  Google Scholar 

  • Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D (2011) Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genom 12:28

    CAS  Google Scholar 

  • Fondevilla S, Rotter B, Krezdorn N, Jüngling R, Winter P, Rubiales D (2014) Identification of genes involved in resistance to Didymella pinodes in pea by deepSuperSAGE transcriptome profiling. Plant Mol Biol Rep 32:258–269

    Article  CAS  Google Scholar 

  • Fourmann M, Charlot F, Froger N, Delourme R, Brunel D (2001) Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome 44:1083–1099

    Article  CAS  PubMed  Google Scholar 

  • Garry G, Tivoli B, Jeuffroy MH, Citharel J (1996) Effects of ascochyta blight caused by Mycosphaerella pinodes on the translocation of carbohydrates and nitrogenous compounds from the leaf and hull to the seed of dried-pea. Plant Pathol 45:769–777

    Article  CAS  Google Scholar 

  • Huettel B, Santra D, Muehlbauer FJ, Kahl G (2002) Resistance gene analogues of chickpea (Cicer arietinum L.): isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105:479–490

    Article  CAS  PubMed  Google Scholar 

  • Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C (2009) Silent (synonymous) SNPs: should we care about them? Methods Mol Biol 578:23–39

    Article  CAS  PubMed  Google Scholar 

  • Hunter PJ, Ellis N, Taylor JD (2001) Association of dominant loci for resistance to Pseudomonas syringae pv. pisi with linkage groups II, VI and VII of Pisum sativum. Theor Appl Genet 103:129–135

    Article  CAS  Google Scholar 

  • Jha AB, Warkentin TD, Gurusamy V, Tar’an B, Banniza S (2012) Identification of mycosphaerella blight resistance in wild Pisum species for use in pea breeding. Crop Sci 52:2462–2468

    Article  Google Scholar 

  • Jha AB, Arganosa G, Tar’an B, Diederichsen A, Warkentin TD (2013) Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. Genet Resour Crop Evol 60:747–761

    Article  Google Scholar 

  • Khan TN, Timmerman-Vaughan GM, Rubiales D, Warkentin TD, Siddique KHM, Erskine W, Barbetti MJ (2013) Didymella pinodes and its management in field pea: challenges and opportunities. Field Crop Res 148:61–77

    Article  Google Scholar 

  • Kraft JM, Dunne B, Goulden D, Armstrong S (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Dis 82:251–253

    Article  Google Scholar 

  • Lai FM, DeLong C, Mei K, Wignes T, Fobert PR (2002) Analysis of the DRR230 family of pea defensins: gene expression pattern and evidence of broad host-range antifungal activity. Plant Sci 163:855–864

    Article  CAS  Google Scholar 

  • Moussart A, Tivoli B, Lemarchand E, Deneufbourg F, Roi S, Sicard G (1998) Role of seed infection by the Ascochyta blight pathogen of dried pea (Mycosphaerella pinodes) in seedling emergence, early disease development and transmission of the disease to aerial plant parts. Eur J Plant Pathol 104:93–102

    Article  Google Scholar 

  • Peever TL, Barve MP, Stone LJ, Kaiser WJ (2007) Evolutionary relationships among Ascochyta species infecting wild and cultivated hosts in the legume tribes Cicereae and Vicieae. Mycologia 99:59–77

    Article  CAS  PubMed  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    Article  CAS  PubMed  Google Scholar 

  • Prioul-Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Pilet-Nayel ML, Baranger A (2007) Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114:971–984

    Article  CAS  PubMed  Google Scholar 

  • Seki H, Nakamura N, Marutani M, Okabe T, Sanematsu S, Inagaki Y, Toyoda K, Shiraishi T, Yamada T, Ichinose Y (2002) Molecular cloning of cDNA for a novel pea Dof protein, PsDof1, and its DNA-binding activity to the promoter of PsDof1 gene. Plant Biotechnol 19:251–260

    Article  CAS  Google Scholar 

  • Seki H, Marutani M, Inagaki Y, Yoyoda K, Shiraishi T, Ichinose Y (2003) Possible involvement of AAAG motif and PsDof1 in elicitor-induced gene expression in pea. Sci Fac Agr Okayama Univ 92:21–26

    CAS  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Balde S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491

    Article  PubMed  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Weeden NF (2000) Characterization and linkage mapping of R-gene analogous DNA sequences in pea (Pisum sativum L.). Theor Appl Genet 101:241–247

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Murray S, Falloon K (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Johnston P, Lakeman MB, Russell AC, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631

    Article  CAS  PubMed  Google Scholar 

  • Warkentin TD, Vandenberg A, Banniza S, Slinkard AE (2004) CDC Striker field pea. Can J Plant Sci 84:230–240

    Article  Google Scholar 

  • Warkentin TD, Vandenberg A, Tar’an B, Banniza S, Barlow B, Ife S (2007) CDC Meadow field pea. Can J Plant Sci 87:909–910

    Article  Google Scholar 

  • Warkentin TD, Delgerjav T, Arganosa G, Rehman AU, Bett KE, Anbessa Y, Rossnagel B, Raboy V (2012) Development and characterization of low-phytate pea. Crop Sci 52:74–78

    Article  Google Scholar 

  • Xue AG, Warkentin TD, Greeniaus MT, Zimmer RC (1996) Genotypic variability in seedborne infection of field pea by Mycosphaerella pinodes and its relation to foliar disease severity. Can J Plant Pathol 18:370–374

    Article  Google Scholar 

  • Xue AG, Warkentin TD, Kenaschuk EO (1997) Effect of timings of inoculation with Mycosphaerella pinodes on yield and seed infection on field pea. Can J Plant Sci 77:685–689

    Article  Google Scholar 

  • Zhang R, Hwang SF, Chang KF, Gossen BD, Strelkov SE, Turnbull GD, Blade SF (2006) Genetic resistance to Mycosphaerella pinodes in 558 field pea accessions. Crop Sci 46:2409–2414

    Article  Google Scholar 

  • Zhang R, Hwang SF, Gossen BD, Chang KF, Turnbull DG (2007) A quantitative analysis of resistance to mycosphaerella blight in field pea. Crop Sci 47:162–167

    Article  Google Scholar 

  • Zimmer MC, Sabourin D (1986) Determining resistance reaction of field pea cultivars at the seedling stage to Mycosphaerella pinodes. Phytopathology 76:878–881

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Agricultural Development Fund of the Saskatchewan Ministry of Agriculture and the Saskatchewan Pulse Growers are gratefully acnowledged. We are grateful to Kamal Bandara, Parvaneh Hashemi, Robert Stonehouse, the pulse pathology and breeding crews at the University of Saskatchewan for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Warkentin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A.B., Tar’an, B., Diapari, M. et al. Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica 202, 189–197 (2015). https://doi.org/10.1007/s10681-014-1254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1254-6

Keywords

Navigation