Skip to main content
Log in

Genome size variation among sex types in dioecious and trioecious Caricaceae species

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Caricaceae is a small family consisting of 35 species of varying sexual systems and includes economically important fruit crop, Carica papaya, and other species of “highland papayas”. Flow cytometry was used to obtain genome sizes for 11 species in three genera of Caricaceae to determine if genome size differences can be detected between sexes. Genome sizes ranged from 442.5 to 625.9 megabases (Mb) likely due to variation in the accumulation of retrotransposons in the genomes. The C. papaya genome size was estimated to be 442.5 Mb, larger than previously reported. Significant differences were detected between male and female samples in Jacaratia spinosa, Vasconcellea horovitziana, and V. stipulata, and between male and hermaphrodite samples of V. cundinamarcensis, suggesting the presence of sex chromosomes for these species. The small size differences between genomes of the papaya sexes were not detected using flow cytometry. Vasconcellea horovitziana was discovered to have a larger female genome size than male, suggesting the possibility of a ZW sex chromosome system in the family. The estimated genome sizes of these 11 species will be used in sequencing their genomes and in sex chromosome research for this family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arumuganathan AK, Earle ED (1991a) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991b) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–233

    Article  CAS  Google Scholar 

  • Bergero R, Forrest A, Kamau E, Charlesworth D (2007) Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics 175:1945–1954

    Article  PubMed  CAS  Google Scholar 

  • Carvalho FA, Renner SS (2012) The phylogeny of the Caricaceae. In: Ming R, Moore PH (eds) Genetics and genomics of papaya. Springer, Heidelberg

    Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and resource re-allocation from male to female functions. Am Nat 112:975–997

    Article  Google Scholar 

  • Charlesworth D, Guttman D (1999) The evolution of dioecy and plant sex chromosome systems. In: Ainsworth CC (ed) Sex determination in plants. BIOS scientific publishers, Oxford, pp 25–49

    Google Scholar 

  • Ciupercescu D, Veuskens J, Mouras A, Ye D, Briquet M, Negrutiu I (1990) Karyotyping Melandrium album, a dioecious plant with heteromorphic sex chromosomes. Genome 33:556–562

    Article  CAS  Google Scholar 

  • Costich DE, Meagher TR, Yurkow EJ (1991) A rapid means of sex identification in Silene latifolia by use of flow cytometry. Plant Mol Biol Rep 9:359–370

    Article  Google Scholar 

  • Damasceno PC Jr, Da Costa FR, Pereira TNS, Neto MF, Pereira MG (2009) Karyotype determining in three Caricaceae species emphasizing the cultivated form (C. papaya L.). Caryologia 62:10–15

    Google Scholar 

  • Darlington CD, Janaki Ammal EK (1945) Chromosome atlas of cultivated plants. George Allen and Unwin, London

    Google Scholar 

  • Darlington CD, Wylie AP (1956) Chromosome atlas of flowering plants. George Allen and Unwin, London

    Google Scholar 

  • De Zerpa DM (1959) Citologia de hibridos interespecificos en Carica. Agron Trop 8:135–144

    Google Scholar 

  • Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106

    Article  PubMed  Google Scholar 

  • Doležel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128

    Article  Google Scholar 

  • Gschwend AR, Yu Q, Tong EJ et al (2012) Rapid divergence and expansion of the X chromosome in papaya. Proc Natl Acad Sci USA 109(34):13716–13721

    Google Scholar 

  • Liu Z, Moore PH, Ma H et al (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  PubMed  CAS  Google Scholar 

  • Magdalita PM, Drew RA, Adkins SW, Godwin ID (1997) Morphological, molecular, and cytological analysis of Carica × C. cauliflora interspecific hybrids. Theor Appl Genet 95:224–229

    Article  CAS  Google Scholar 

  • Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol 18:401–408

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Na J-K, Wang J, Murray JE et al (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 13:176. doi:10.1186/1471-2164-13-176

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin Y-K et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Scheldman X, Kyndt T, d’Eeckenbrugge GC, Ming R, Drew R, Van Droogenbroeck B, Van Damme P, Moore PH (2011) Vasconcellea, Chap. 11. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, tropical and subtropical fruits. Springer, New York, pp 213–249

  • Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot London 93:317–321

    Article  CAS  Google Scholar 

  • Tookey HL, Gentry HS (1969) Proteinase of Jarilla chocola, a relative of papaya. Phytochemistry 8:989–991

    Article  CAS  Google Scholar 

  • Van Buren R, Li J, Zee F, Zhu J, Liu C, Arumuganathan AK, Ming R (2011) Longli is not a hybrid of Longan and Lychee as revealed by genome size analysis and trichome morphology. Trop Plant Biol 4:228–236

    Article  Google Scholar 

  • Wang J, Na J-K, Yu Q et al (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA 109(34):13710–13715

    Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Wang J, Na J-K, Yu Q, Moore RC, Zee F, Huber SC, Ming R (2010) The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea. Plant J 63:801–810

    Article  PubMed  CAS  Google Scholar 

  • Yin T, DiFazio SP, Gunter LE et al (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18:422–430

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Hou S, Hobza R et al (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278:177–185

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Hou S, Feltus FA et al (2008a) Low X/Y divergence in four pairs of papaya sex-linked genes. Plant J 53:124–132

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Navajas-Pérez R, Tong E, Robertson J, Moore PH, Paterson AH, Ming R (2008b) Recent origin of dioecious and gynodioecious Y chromosomes in papaya. Trop Plant Biol 1:49–57

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jason Okamoto, Russell Kai, and Carol Mayo Riley for assistance on sample collection and shipment. This work was supported by grants from the National Science Foundation (NSF) Plant Genome Research Program (Award No. DBI-0922545).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gschwend, A.R., Wai, C.M., Zee, F. et al. Genome size variation among sex types in dioecious and trioecious Caricaceae species. Euphytica 189, 461–469 (2013). https://doi.org/10.1007/s10681-012-0815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0815-9

Keywords

Navigation