Skip to main content
Log in

A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench]

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Plant height is one of the most important agronomic traits in sorghum with its relevance for biomass, grain yield, fodder and lodging. To understand its genetic basis, the quantitative trait loci (QTL) were identified using a recombinant inbred line (RIL) population consisting of 168 RILs derived from the cross between the two sorghum inbred lines 296B (dwarf) and IS18551 (tall) over six seasons. Two major QTL were identified one each on chromosomes SBI-06 and SBI-07 corresponding to the Dw2 and Dw3 gene loci together accounting 41 % plant height variation. In addition, a morphological bloom trait locus which remained unlinked in the linkage map was found to be significantly linked with plant height in single marker analysis explaining 22 % of the trait variation. By comparing the map positions of Dw1, Dw2 and Dw3, the new locus for plant height linked with bloom is proposed as Dw4 locus. Both SSR and the morphological bloom loci linked with height QTL of the present study can be employed as effective tools in marker-assisted breeding for rapid conversion of selected inbred parent lines either as dwarf seed (male sterile) parents or taller pollinators for hybrid seed industry, or for developing high biomass lines in sweet sorghum for exploitation as high bio-fuel crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  PubMed  CAS  Google Scholar 

  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637

    Article  PubMed  Google Scholar 

  • Burow GB, Franks CD, Xin Z (2008) Genetic and physiological analysis of an irradiated bloomless mutant (Epicuticular Wax Mutant) of sorghum. Crop Sci 48:41–48

    Article  Google Scholar 

  • Calvino M, Messing J (2012) Sweet sorghum as a model system for bioenergy crops. Curr Opin Biotechnol 23:323–329

    Article  PubMed  CAS  Google Scholar 

  • Casady AJ (1965) Effect of a single height (Dw) gene of sorghum on grain yield, grain yield components, and test weight. Crop Sci 5:385–388

    Article  Google Scholar 

  • Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  PubMed  CAS  Google Scholar 

  • Cummins DG, Sudweeks EM (1976) In vivo performance of bloom and bloomless sorghum forage. Agron J 68:735–737

    Article  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • George-Jaeggli B, Jordan DR, van Oosterom EJ, Hammer GL (2011) Decrease in sorghum grain yield due to the dw3 dwarfing gene is caused by reduction in shoot biomass. Field Crop Res 124:231–239

    Article  Google Scholar 

  • Graham D, Lessman KJ (1966) Effect of height on yield and yield components of two isogenic lines of sorghum vulgare Pers. Crop Sci 6:372–374

    Article  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Iyanar K, Vijayakumar G, Khan AKF (2010) Correlation and path analysis in multicut fodder sorghum. Electron J Plant Breed 1:1006–1009

    Google Scholar 

  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WL, Menz MA, Franks CD, Klein PE (2008) The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Sci 48:S12–S26

    Article  Google Scholar 

  • Lehmann EL (1975) Nonparametrics: statistical methods based on ranks. Holden and Day, San Francisco

    Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Mace E, Jordan D (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121:1339–1356

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191

    Article  PubMed  CAS  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    Article  PubMed  CAS  Google Scholar 

  • Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193

    Article  Google Scholar 

  • Pereira M, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  Google Scholar 

  • Premachandra GS, Hahn DT, Axtell JD, Joly RJ (1994) Epicuticular wax load and water-use efficiency in bloomless and sparse-bloom mutants of Sorghum bicolor (L.). Environ Exp Bot 34:293–301

    Article  Google Scholar 

  • Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agron J 46:211–216

    Article  Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Reddy BVS, Ramesh S, Reddy PS, Ramaiah B, Salimath PM, Kachapur R (2005) Sweet sorghum: a potential alternate raw material for bio-ethanol and bio-energy. Int Sorghum Millets Newsl 46:79–86

    Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, Lynne McIntyre C (2008) Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Salas Fernandez MG, Becraft PW, Yin Y, Lübberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14:454–461

    Article  PubMed  CAS  Google Scholar 

  • Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119:1425–1439

    Article  PubMed  CAS  Google Scholar 

  • Satish K, Madhusudhana R, Padmaja P, Seetharama N, Patil JV (2012) Development, genetic mapping of candidate gene-based markers and their significant association with the shoot fly resistance quantitative trait loci in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed. doi:10.1007/s11032-012-9740-9

    Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen J (2005) In: Kyazma BV (ed) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Wageningen Academic, Netherlands

    Google Scholar 

  • Vilas AT, Patil JV, Dayakar Rao B, Elangoan M, Venkatesh Bhat B, Raghavendra Rao KV (2011) Sorghum: Vision 2030. Directorate of Sorghum Research, Hyderabad, p 38

    Google Scholar 

  • Weibel DE, Starks KJ (1986) Greenbug nonpreference for bloomless sorghum. Crop Sci 26:1151–1153

    Article  Google Scholar 

  • Yang J, Zhu J (2005) Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet 110:1268–1274

    Article  PubMed  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Indian Council of Agricultural Research (ICAR) for the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madhusudhana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhusudhana, R., Patil, J.V. A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 191, 259–268 (2013). https://doi.org/10.1007/s10681-012-0812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0812-z

Keywords

Navigation