Skip to main content
Log in

Image analysis for QTL mapping of flower colour and leaf characteristics in pot azalea (Rhododendron simsii hybrids)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In azalea breeding, flower colour is the most essential selection criterion, but leaf morphology also influences attractiveness of the plant. Despite extensive study of the inheritance of flower colour, no explanation has yet been found for the pink phenotype. We have used image analysis to quantify flower colour and leaf morphology. Flower colour was quantified in a whole population. Pink flower colour has been confirmed to be the result of a gene-dosage effect; two major QTLs were found for flower colour as well as some minor QTLs that seem to be related to pink coloration. Leaf morphology (colour and shape) was scored in four unrelated populations by means of image analysis. The image analysis generated continuous, highly informative data for QTL mapping. Both classical parameters and symmetrical elliptic Fourier descriptors successfully described leaf morphology. Image analysis resulted in large data sets that had to be combined in principal components. Only a limited number of QTLs were found for leaf colour, but we could discern some major QTLs for leaf shape and size that were consistent over the different mapping populations. These QTLs are the most interesting candidates for future analysis of the selected traits. The multi-population approach certainly proved to be valuable for QTL mapping of complex traits. For leaf morphology, however, more research is needed to identify the most valuable QTLs for future use in MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe H, Nakano M, Nakatsuka A, Nakayama M, Koshioka M, Yamagishi M (2002) Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. Theor Appl Genet 105:1175–1182

    Google Scholar 

  • Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109:419–424

    Article  PubMed  CAS  Google Scholar 

  • Billotte N, Jourjon MF, Marseillac N, Berger A, Flori A, Asmady H, Adon B, Singh R, Nouy B, Potier F, Cheah SC, Rohde W, Ritter E, Courtois B, Charrier A, Mangin B (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–1687

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset MN, Paulin JP, Durel CE (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135

    Article  PubMed  CAS  Google Scholar 

  • Cartwright DA, Troggio M, Velasco R, Gutin A (2007) Genetic mapping in the presence of genotyping errors. Genetics 176:2521–2527

    Article  PubMed  CAS  Google Scholar 

  • De Keyser E, Shu QY, Van Bockstaele E, De Riek J (2010) Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids). BMC Mol Biol 11:1

    Article  PubMed  Google Scholar 

  • De Loose R (1968) Flavonoid glycosides in the petals of some Rhododendron species and hybrids. Phytochem 9:875–879

    Article  Google Scholar 

  • De Loose R (1969) The flower pigments of the Belgian hybrids of Rhododendron simsii and other species and varieties from Rhododendron subseries obtusum. Phytochem 88:253–259

    Article  Google Scholar 

  • De Schepper S, Debergh P, Van Bockstaele E, De Loose M (2001) Molecular characterisation of flower colour genes in azalea sports (Rhododendron simsii hybrids). Acta Hort 552:143–150

    Google Scholar 

  • Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899

    Article  CAS  Google Scholar 

  • Dugo ML, Satovic Z, Millan T, Cubero JI, Rubiales D, Cabrera A, Torres AM (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor Appl Genet 111:511–520

    Article  PubMed  CAS  Google Scholar 

  • Dunemann F, Kahnau R, Stange I (1999) Analysis of complex leaf and flower characters in Rhododendron using a molecular linkage map. Theor Appl Genet 98:1146–1155

    Article  CAS  Google Scholar 

  • Espinoza LDL, Huguet T, Julier B (2012) Multi-population QTL detection for aerial morphogenetic traits in the model legume Medicago truncatula. Theor Appl Genet 124:739–754

    Article  Google Scholar 

  • Frary A, Fritz LA, Tanksley SD (2004) A comparative study of the genetic bases of natural variation in tomato leaf, sepal and petal morphology. Theor Appl Genet 109:523–533

    Article  PubMed  Google Scholar 

  • Furuta N, Ninomiya S, Takahashi S, Ohmori H, Ukai Y (1995) Quantitative evaluation of soybean (Glycine max L. Merr.) leaflet shape by principal component scores based on elliptic Fourier descriptors. Breeding Sci 45:315–320

    Google Scholar 

  • Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S (2007) Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome 50:627–637

    Article  PubMed  Google Scholar 

  • Gould KS, Markham KR, Smith RH, Goris JJ (2000) Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J Exp Bot 51:1107–1115

    Article  CAS  Google Scholar 

  • Han TH, van Eck HJ, De Jeu MJ, Jacobsen E (2002) Mapping of quantitative trait loci involved in ornamental traits in Alstroemeria. HortScience 37:585–592

    CAS  Google Scholar 

  • Hansen BG, Halkier B, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–77

    Article  PubMed  CAS  Google Scholar 

  • Heursel J, Calus A (1986) Leaf length, leaf width and leaf area of azalea cultivars (Rhododendron simsii und R. obtusum Planch.). Gartenbauwissenschaft 51:259–263

    Google Scholar 

  • Heursel J, Garretsen F (1989) Inheritance of corolla size, number of stamens and percentage of plants with petaloid stamens in evergreen azaleas (Rhododendron Subsect. obtusa). Plant Breeding 103:304–309

    Article  Google Scholar 

  • Heursel J, Horn W (1977) A hypothesis on the inheritance of flower colours and flavonoids in Rhododendron simsii Planch. Zeitschrift für Pflanzenzüchtung 79:238–249

    CAS  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Niikura S, Matsuura S, Takano Y, Ukai Y (1998) Evaluation of variation of root shape of Japanese raddish (Raphanus sativus L.) based on image analysis using elliptic Fourier descriptors. Euphytica 102:143–149

    Article  Google Scholar 

  • Iwata H, Nesumi H, Ninomiya S, Takano Y, Ukai Y (2002) Diallel analysis of leaf shape variations of citrus varieties based on elliptic Fourier descriptors. Breeding Sci 52:89–94

    Article  Google Scholar 

  • Jansen RC, Tesson BM, Jingyuan F, Yang Y, McIntyre LM (2009) Defining gene and QTL networks. Curr Opin Plant Biol 12:241–246

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Wright RJ, Woo SS, DelMonte TA, Paterson AH (2000) QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theor Appl Genet 100:409–418

    Article  CAS  Google Scholar 

  • Juenger T, Perez–Perez JM, Bernal S, Micol JL (2005) Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture. Evolution Development 7:259–271

    Article  PubMed  CAS  Google Scholar 

  • Karcher DE, Richardson MD (2003) Turfgrass science: quantifying turfgrass color using digital image analysis. Crop Sci 43:943–951

    Article  Google Scholar 

  • Kobayashi S, Fukuta Y, Morita S, Sato T, Osaki M, Khush GS (2003) Quantitative trait loci affecting leaf flag development in rice (Oryza sativa L.). Breed Sci 53:255–262

    Article  CAS  Google Scholar 

  • Larsen ES, Alfenito MR, Briggs WR, Walbot V (2003) A carnation anthocyanin mutant is complemented by the glutathione S-transferases encoded by maize Bz2 and petunia An9. Plant Cell Rep 21:900–904

    PubMed  CAS  Google Scholar 

  • Lootens P, Van Waes J, Carlier L (2007a) Evaluation of the tepal colour of Begonia x tuberhybrida Voss. for DUS-testing using image analysis. Euphytica 155:135–142

    Article  Google Scholar 

  • Lootens P, Van Waes J, Carlier L (2007b) Description of the morphology of roots of Chicorium intybus L. Partim by means of image analysis: comparison of elliptic Fourier descriptors and classical parameters. Comput Electron Agric 58:164–173

    Article  Google Scholar 

  • Lou P, Zhao J, Kim JS, Shen S, del Carpio DP, Song X, Jin M, Vreugdenhil D, Wang X, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016

    Article  PubMed  CAS  Google Scholar 

  • McLellan T (1993) The roles of heterochony and heteroblasty in the diversification of leaf shapes of Begonia dregei (Begoniaceae). Am J Bot 80:796–804

    Article  Google Scholar 

  • Mizuta D, Nakatsuka A, Kobayashi N (2008) Development of multiplex PCR markers to distinguish evergreen and deciduous azaleas. Plant Breed 127:533–535

    Article  CAS  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA, Walbot V (2000) AN9, a Petunia glutathione S-transferase resuired for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    Article  PubMed  CAS  Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873

    Article  CAS  Google Scholar 

  • Norusis NJ (2002) SPSS for Windows release 11.1.5, http://www.spss.com, Chicago, Illinois

  • Okogbenin E, Fregene M (2003) Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in Cassava (Manihot esculenta Crantz). Theor Appl Genet 107:1452–1462

    Article  PubMed  CAS  Google Scholar 

  • Parsons NR, Edmondson RN, Song Y (2009) Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses. Biosyst Eng 104:161–168

    Article  Google Scholar 

  • Pauly L, Flajoulot S, Garon J, Julier B, Beguier V, Barre P (2012) Detection of favorable alleles for plant height and crown rust tolerance in three connected populations of perennial ryegrass (Lolium perenne L.). Theor Appl Genet 124:1139–1153

    Article  PubMed  Google Scholar 

  • Perez-Perez JM, Esteve-Bruna D, Micol JL (2010) QTL analysis of leaf architecture. J Plant Res 123:15–23

    Google Scholar 

  • Pierre JB, Huguet T, Barre P, Huyghe C, Julier B (2008) Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theor Appl Genet 117:609–620

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291

    Article  PubMed  CAS  Google Scholar 

  • StatSoft, Inc. (2009) STATISTICA (data analysis software system), version 9.0. www.statsoft.com

  • Symonds VV, Godoy AV, Alconada T, Botto JF, Juenger TE, Casal JJ, Lloyd AM (2005) Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genet 169:1649–1658

    Article  CAS  Google Scholar 

  • UPOV (2007) Guidelines for the conduct of tests for distinctness, uniformity and stability. Pot azalea (Rhododendron simsii Planch.). TG/140/4 Corr

  • Van Ooijen JW (2004) MapQTL®5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical representation of linkage maps and QTLs. J Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Wang YZ, Li JZ, Li YL, Wei MG, Li XH, Fu JF (2010) QTL detection for grain oil and starch content and their associations in two connected F-2:3 populations in high oil maize. Euphytica 174:239–252

    Google Scholar 

  • Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breeding 20:359–374

    Article  CAS  Google Scholar 

  • White R, Rentice HC, Verwist T (1998) Automated image acquisition and morphometric description. Can J Bot 66:450–459

    Article  Google Scholar 

  • Yagi M, Onozaki T, Nakayama M, Shibata M (2008) Mapping floral anthocyanin pigmentation traits in carnation by molecular linkage map. Acta Hort 766:455–459

    Google Scholar 

  • Yoshioka Y, Iwata H, Ohsawa R, Ninomiya S (2004) Analysis of petal shape variation of Primula sieboldii by elliptic Fourier descriptors and principal component analysis. Ann Bot 94:657–664

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Veerle Buysens, Laurence Desmet, Veerle Cools, Katrien Liebaut and Evelien Calsyn for their outstanding technical assistance. We want to express our gratitude to the Ornamental Research Centre (Destelbergen) for maintaining the populations. We are also grateful to Miriam Levenson for English language review. This research was funded by IWT-Flanders (VIS-CO 30907) and the Ministry of Agriculture of Flanders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen De Keyser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10681_2012_809_MOESM1_ESM.pdf

Online Resource 1 Selected classical shape parameters used to determine leaf shape in azalea (National Instruments 2007) (PDF 28 kb)

10681_2012_809_MOESM2_ESM.pdf

Online Resource 2 Linkage groups (16) of the 4 maps on which QTLs for flower colour and leaf morphology were identified. For comparison between maps, bridging markers present in at least 2 population maps were printed in bold and italic. Maps were drawn in MapChart2.2 (Voorrips 2002) (PDF 216 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Keyser, E., Lootens, P., Van Bockstaele, E. et al. Image analysis for QTL mapping of flower colour and leaf characteristics in pot azalea (Rhododendron simsii hybrids). Euphytica 189, 445–460 (2013). https://doi.org/10.1007/s10681-012-0809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0809-7

Keywords

Navigation