Skip to main content
Log in

Inheritance of berry volatile compounds in two half-sib grape (Vitis vinifera) populations

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Inheritance of grape berry volatile compounds was studied in the half-sib populations of ‘Jingxiu’ × ‘Muscat of Alexandria’ and ‘Jingxiu’ × ‘Xiangfei’ during two successive years. Twenty-two volatile compounds were identified via GC–MS. Monoterpenes were detected in the paternal parents ‘Muscat of Alexandria’ and ‘Xiangfei’, which were Muscat grapes, but not in the non-Muscat maternal parent ‘Jingxiu’. Four C6 compounds, five carbonyls and one ester (ethyl acetate) were found in all the parents, 2-ethylhexanol (alcohol) in ‘Jingxiu’ and ‘Muscat of Alexandria’, and hexyl acetate (ester) in ‘Jingxiu’. The paternal effect varied with year, while the inheritance patterns of volatile compounds, except for (Z)-linalool oxide, were stable between years and between populations. Four C6 compounds, five carbonyls, two esters and one alcohol were typical quantitative traits in both half-sib populations in 2 years. Most monoterpenes, including geraniol, α-terpineol and linalool, exhibited continuous variation in the half-sib progenies, but some other monoterpenes, such as (Z)-rose oxide, nerol oxide, nerol, neral, geranial and geranic acid, appeared to segregate into presence or absence in the progenies (1:1). However, (Z)-linalool oxide, behaved as a quantitative trait in the ‘Jingxiu’ × ‘Muscat of Alexandria’ population, but segregated into presence or absence (1:1) in the ‘Jingxiu’ × ‘Xiangfei’ population for both years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, Velasco R, Versini G, Grando MS (2009) The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 118:653–669

    Article  PubMed  CAS  Google Scholar 

  • Battilana J, Emanuelli F, Gambino G, Gribaudo I, Gasperi F, Boss PK, Grando MS (2011) Functional effect of grapevine 1-deoxy-d-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. J Exp Bot 62:5497–5508

    Article  PubMed  CAS  Google Scholar 

  • Bayonove C, Cordonnier R (1971) Recherches sur l’arôme du Muscat. III. Etude de la fraction terpénique. Ann Technol Agric 20:347–355

    CAS  Google Scholar 

  • Belancic A, Agosin E, Ibacache A, Bordeu E, Beaumes R, Razungles A, Bayonove C (1997) Influence of sun exposure on the aromatic composition of Chilean Muscat grape cultivars Moscatel de Alejandria and Moscatel rosada. Am J Enol Vitic 48:181–186

    CAS  Google Scholar 

  • Coelho E, Rocha SM, Delgadillo I, Coimbra MA (2006) Headspace-SPME applied to varietal volatile components evolution during Vitis vinifera L cv. ‘Baga’ ripening. Anal Chim Acta 563:204–214

    Article  CAS  Google Scholar 

  • Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food 1:1–22

    Google Scholar 

  • Doligez A, Audiot E, Baumes R, This P (2006) QTLs for muscat flavour and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18:109–125

    Article  CAS  Google Scholar 

  • Duchêne E, Butterlin G, Claudel P, Dumas V, Jaegli N, Merdinoglu D (2009) A grapevine (Vitis vinifera L.) deoxy-d-xylulose synthase gene collocates with a major quantitative trait loci for terpenol content. Theor Appl Genet 118:541–552

    Article  PubMed  Google Scholar 

  • Ebang-Oke JP, de Billerbeck GM, Ambid C (2003) Temporal expression of the Lis gene from Vitis vinifera L., cv. Muscat de Frontignan. In: Le Quéré JL, Etiévant PX (eds) Flavour research at the dawn of the twenty-first century—proceedings of the 10th Weurman flavour research symposium, Beaune, France, 25–28 June 2002. Editions Lavoisier, Paris, pp 321–325

    Google Scholar 

  • Eibach R, Hastrich H, Töpfer R (2003) Inheritance of aroma compounds. Acta Hortic 603:337–344

    CAS  Google Scholar 

  • Emanuelli F, Battilana J, Costantini L, Le Cunff L, Boursiquot JM, This P, Grando MS (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol 10:241

    Article  PubMed  Google Scholar 

  • Fahlbusch KG, Hammerschmidt FJ, Panten J, Pickenhagen W, Schatkowski D, Bauer K, Garbe D, Surburg H (2003) Flavors and fragrances in Ullmann’s Encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  • Fanizza G, Corona MG, Resta P (2000) Analysis of genetic relationships among Muscat grapevines in Apulia (South Italy) by RAPD markers. Vitis 39:159–161

    CAS  Google Scholar 

  • Fanizza G, Chaabane R, Lamaj F, Ricciardi L, Resta P (2003) AFLP analysis of genetic relationships among aromatic grapevines (Vitis vinifera). Theor Appl Genet 107:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Gholami M, Hayasaka Y, Coombe BG, Jackson JF, Robinsoni SP, Williams PJ (1995) Biosynthesis of flavour compounds in Muscat Gordo Blanco grape berries. Aust J Grape Wine Res 1:19–24

    Article  CAS  Google Scholar 

  • Guidoni S, Di Stefano R, Schneider A, Cravero MC (1993) Caractérisation ampélographique et aromatique de cépages musqués à raisin coloré. In: Bayonove C, Crouzet J, Flanzy C, Martin JC, Sapis JC (eds) Proceedings of the international symposium “Connaissance aromatique des cépages et qualitédes vins”, Montpellier, France, 9–10 February, 1993. Revue Française d’Oenologie, Lattes., France, pp 142–151

  • Kataoka H, Lord HL, Pawliszyn J (2000) Applications of solid-phase microextractoin in food analysis. J Chromatogr A 880:35–62

    Article  PubMed  CAS  Google Scholar 

  • Lefort PL (1980) Biometrical analysis of must aromagrams: application to grape breeding. In: Proceedings of the third international symposium on grape breeding, Davis, CA, 15–18 June 1980. Davis, pp 120–129

  • Li JM, He PC (2002) Inheritance of aroma compounds in Vitis interspecific crossings. Acta Hortic Sin 29:9–12

    Google Scholar 

  • Li K, Guo XW, Xie HG, Guo YS, Li TH, Li CX (2005) The analyses of inheritance of aroma components in progenies of selfing and crossing combination of grape. Acta Hortic Sin 32:218–221

    CAS  Google Scholar 

  • Marais I (1983) Terpenes in the aroma of grapes and wines: a review. S Afr J Enol Vitic 4:49–60

    CAS  Google Scholar 

  • Mass Spectrometry Data Centre (1974) Eight peak index of mass spectra. Mass Spectrometry Data Centre, Aldermasston

  • Mateo JJ, Jiménez M (2000) Monoterpenes in grape juice and wines. J Chromatogr A 881:557–567

    Article  PubMed  CAS  Google Scholar 

  • NIST Chemistry WebBook (2005) Mass spectra in NIST chemistry WebBook, NIST standard reference database number 69, June 2005, National Institute of Standards and Technology, Gaithersburg Maryland USA (http://webbook.nist.gov/chemistry/)

  • Park SK, Noble AC (1993) Monoterpenes and monoterpene glycosides in wine aromas. In: Gump BH (ed) Beer and wine production. American Chemical Society, Washington, DC, pp 98–109

    Chapter  Google Scholar 

  • Perez V, Rios CJ, Sauz RO (1992) Aroma components and free amino acids in strawberry variety Chandler during ripening. J Agric Food Chem 40:2232–2235

    Article  CAS  Google Scholar 

  • Rapp A, Suckran I, Volkmann C (1993) Investigations of grape and wine aroma: contribution to the characterization of wines of different varieties. In: Bayonove C, Crouzet J, Flanzy C, Martin JC, Sapis JC (eds) Proceedings of the international symposium “Connaissance aromatique des cépages et qualité des vins”, Montpellier, France, 9–10 February, 1993. Revue Française d’Oenologie, Lattes, France, pp 22–32

  • Reynolds AG, Fuleki T, Evans WD (1982) Inheritance of methyl anthranilate and total volatile esters in Vitis spp. Am J Enol Vitic 33:14–19

    CAS  Google Scholar 

  • Reynolds AG, Wardle DA, Hall JW, Dever M (1995) Fruit maturation of four Vitis vinifera cultivars in response to vineyard location and basal leaf removal. Am J Enol Vitic 46:542–558

    Google Scholar 

  • Ribérau-Gayon P, Boidron JN, Terrier A (1975) Aroma of Muscat grape varieties. J Agric Food Chem 23:1042–1047

    Article  Google Scholar 

  • Ribérau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2000) The chemistry of wine stabilization and treatments. In: Handbook of enology, vol 2. Wiley, Chichester, pp 205–230

  • Rocha S, Coutinho P, Barros A, Coimbra MA, Delgadillo I, Cardoso AD (2000) Aroma potential of two Bairrada white grape varieties: Maria Gomes and Bical. J Agric Food Chem 48:4802–4807

    Article  PubMed  CAS  Google Scholar 

  • Ruther J (2000) Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography-mass spectrometry. J Chromatogr A 890:313–319

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Palomo E, Díaz-Maroto MC, Pérez-Coello MS (2005) Rapid determination of volatile compounds in grapes by HS–SPME coupled with GC–MS. Talanta 66:1152–1157

    Article  PubMed  Google Scholar 

  • Schreier P, Drawert F, Junker A, Reiner L (1976) Anwendung der multiplen Discriminansanalyse zur Differenzierung von Rebsorten an Hand der quantitativen Verteilung fluchtiger Weininhaltsstoffe. Mitteilungen, Rebe und Wein, Obstbau und Fruchteverwertung, Klosterneuburg 26:225–234

    CAS  Google Scholar 

  • Versini G, Dalla Serra A, Monetti A, De Micheli L, Mattivi F, (1993) Free and bound grape aroma profiles variability within the family of Muscat-called varieties. In: Bayonove C, Crouzet J, Flanzy C, Martin JC, Sapis JC (eds) Proceedings of the international symposium “Connaissance aromatique des ce′pages et qualité des vins”, Montpellier, France, 9–10 February, 1993. Revue Française d’Oenologie, Lattes, pp 12–21

  • Wagner R (1967) Etude de quelques disjonctions dans des descendances de Chasselas, Muscat Ottonel et Muscat à petits grains. Vitis 6:353–363

    Google Scholar 

  • Wagner R, Dirninger N, Fuchs V, Bronner B (1978) Premiers résultats concernant l’étude génétique de constituants volatils importants de l’arôme des raisins dans deux descendances de Vitis vinifera L. In: Iind symposium on grape genetics and breeding, Bordeaux, France, 14–18 June, 1977. Institut National de la Recherche Agronomique, Paris, pp 429–434

  • Watkins P, Wijesundera C (2006) Application of zNoseTM for the analysis of selected grape aroma compounds. Talanta 70:595–601

    Article  PubMed  CAS  Google Scholar 

  • Yang CX, Wang YJ, Liang ZC, Fan PG, Wu BH, Yang L, Wang YN, Li SH (2009) Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC–MS. Food Chem 114:1106–1114

    Article  CAS  Google Scholar 

  • Yang CX, Wang YJ, Wu BH, Fang JB, Li SH (2011) Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chem 128:823–830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Program on Key Basic Research Project of China (973 Program, No. 2011CB100605); and National Natural Science Foundation of China (No. 30971988, 30771494). The authors thank Douglas D. Archbold (Department of Horticulture, University of Kentucky, USA) and Gan-Yuan Zhong (ARS, USDA) for critical review and improving English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Li.

Additional information

C. X. Yang—Co-author, equally contribute to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B.H., Yang, C.X., Liang, Z.C. et al. Inheritance of berry volatile compounds in two half-sib grape (Vitis vinifera) populations. Euphytica 189, 351–364 (2013). https://doi.org/10.1007/s10681-012-0754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0754-5

Keywords

Navigation