Skip to main content
Log in

BLUP for phenotypic selection in plant breeding and variety testing

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Best linear unbiased prediction (BLUP) is a standard method for estimating random effects of a mixed model. This method was originally developed in animal breeding for estimation of breeding values and is now widely used in many areas of research. It does not, however, seem to have gained the same popularity in plant breeding and variety testing as it has in animal breeding. In plants, application of mixed models with random genetic effects has up until recently been mainly restricted to the estimation of genetic and non-genetic components of variance, whereas estimation of genotypic values is mostly based on a model with fixed effects. This paper reviews recent developments in the application of BLUP in plant breeding and variety testing. These include the use of pedigree information to model and exploit genetic correlation among relatives and the use of flexible variance–covariance structures for genotype-by-environment interaction. We demonstrate that BLUP has good predictive accuracy compared to other procedures. While pedigree information is often included via the so-called numerator relationship matrix \(({\user2{A}})\), we stress that it is frequently straightforward to exploit the same information by a simple mixed model without explicit reference to the \({\user2{A}}\)-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aleta N, Ninot A, Voltas J (2004) Retrospective evaluation of parental selection in nursery tests of Juglans regia L. using a mixed model analysis. Silvae Genet 53:26–33

    Google Scholar 

  • Atlin GN, Baker RJ, McRae KB, Lu X (2000) Selection response in subdivided target regions. Crop Sci 40:7–13

    Article  Google Scholar 

  • Bauer AM (2006) BLUP-Zuchtwertschätzung bei selbstbefruchtenden Getreidearten unter Berücksichtigung aller Verwandtschaftsinformationen und der Inzuchtverhältnisse. Diss, Bonn

  • Bauer AM, Reetz TC, Léon J (2006) Estimation of breeding values of inbred lines using best linear unbiased prediction (BLUP) and genetic similarities. Crop Sci 46:2685–2691

    CAS  Google Scholar 

  • Bernardo R (1993) Estimation of coefficient of coancestry using molecular markers in maize. Theor Appl Genet 85:1055–1062

    Google Scholar 

  • Bernardo R (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci 34:20–25

    Article  Google Scholar 

  • Bernardo R (1995) Genetic models for predicting maize single-cross performance in unbalanced yield trial data. Crop Sci 35:141–147

    Article  Google Scholar 

  • Bernardo R (1996a) Marker-based estimates of identity by descent and alikeness in state among maize inbreds. Theor Appl Genet 93:262–267

    Google Scholar 

  • Bernardo R (1996b) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56

    Article  Google Scholar 

  • Bernardo R (1996c) Best linear unbiased prediction of the performance of crosses between untested maize inbreds. Crop Sci 36:872–876

    Article  Google Scholar 

  • Bernardo R (1999) Marker-assisted best linear unbiased prediction of single-cross performance. Crop Sci 39:1277–1282

    Article  Google Scholar 

  • Bromley CM, van Vleck LD, Johnson BE, Smith OS (2000) Estimation of genetic variance from F1-performance with and without pedigree relationships among inbred lines. Crop Sci 40:651–655

    Article  Google Scholar 

  • Bueno JSD, Gilmour SG (2003) Planning incomplete block experiments when treatments are genetically related. Biometrics 59:375–381

    Google Scholar 

  • Burgueno J, Crossa J, Cornelius PL, Trethowan R, McLaren G, Krishnamachari A (2007) Modeling additive ×  environment and additive ×  additive ×  environment using genetic covariance of relatives of wheat genotypes. Crop Sci 47:311–320

    Google Scholar 

  • Calinski T, Czajka S, Kaczmarek Z, Krajewski P, Pilarczyk W (2005) Analyzing multi-environment variety trials using randomization-derived mixed models. Biometrics 61:448–455

    PubMed  CAS  Google Scholar 

  • Cervantes-Matrinez CT, Frey KJ, White PJ, Wesenberg DM, Holland JB (2001) Selection for greater β-glucan content in oat grain. Crop Sci 41:1085–1091

    Article  Google Scholar 

  • Cervantes-Matrinez CT, Frey KJ, White PJ, Wesenberg DM, Holland JB (2002) Correlated responses to selection for greater β-glucan content in two oat populations. Crop Sci 42:730–738

    Article  Google Scholar 

  • Charcosset A, Bonnisseau B, Touchebeuf O, Burstin J, Dubreuil P, Barriere Y, Gallais A, Denis JB (1998) Prediction of maize hybrid silage performance using marker data: comparison of several models for specific combining ability. Crop Sci 38:38–44

    Article  Google Scholar 

  • Chevalet C, Gillois M (1977) Estimation of genotypic variance components with dominance in small consanguineous populations. In: Pollak E, Kempthorne O, Bailey TB Jr (eds), Proceedings of the International Conference on Quantitative Genetics, August 16–21, 1976, Iowa State University Press, Ames, pp 271–296

  • Cockerham CC (1954) An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 39:859–882

    PubMed  CAS  Google Scholar 

  • Cockerham CC, Weir BS (1984) Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 40:157–164

    PubMed  CAS  Google Scholar 

  • Colvin JA, Dykstra RL (1991) Maximum likelihood estimation of a set of covariance matrices under Löwner order restrictions with applications to balanced multivariate variance components models. Ann Stat 19:850–869

    Google Scholar 

  • Copas JB (1983) Regression, prediction and shrinkage. J Roy Stat Soc B 45:311–354

    Google Scholar 

  • Copt S, Victoria-Feser MP (2006) High-breakdown inference for mixed linear models. J Am Stat Assoc 101:292–300

    CAS  Google Scholar 

  • Cornelius PL, Crossa J, Seyedsadr MS (1996) Statistical tests and estimators of multiplicative models for genotype-by-environment data. In: Kang MS, Gauch HG Jr (eds) Genotype-by-environment interaction. CRC Press, Boca Raton, pp 199–234

    Google Scholar 

  • Cornelius PL, Crossa J (1999) Prediction assessment of shrinkage estimators of multiplicative models for multi-environment cultivar trials. Crop Sci 39:998–1009

    Article  Google Scholar 

  • Crossa J, Burgueno J, Cornelius PL, McLaren G, Trethowan R, Anitha K (2006) Modeling genotype x environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci 46:1722–1733

    Google Scholar 

  • Cullis BR, Gogel BJ, Verbyla AP, Thompson R (1998) Spatial analysis of multi-environment early generation trials. Biometrics 54:1–18

    Google Scholar 

  • Cullis BR, Lill WJ, Fisher JA, Read BJ (1989) A new procedure for the analysis of early generation variety trials. Appl Stat 2:361–375

    Google Scholar 

  • Cullis BR, Smith A, Coombes N (2006) On the design of early generation variety trials with correlated data. J Agr Biol Environ Stat 11:381–393

    Google Scholar 

  • Curnow RN (1980) Selecting crosses using information from a diallel cross. Biometrics 36:1–8

    Google Scholar 

  • Curnow RN (1988) The use of correlated information on treatment effects when selecting the best treatment. Biometrika 75:287–293

    Google Scholar 

  • Da Costa RB, de Resende MDV, Goncalves PS, Silva MA (2002) Individual multivariate REML/BLUP in the presence of genotype ×  environment interaction in rubber tree (Hevea) breeding. Crop Breed Appl Biotechnol 2:131–139

    Google Scholar 

  • Davik J, Honne BI (2005) Genetic variance and breeding values for resistance to a wind-borne disease [Sphaerotheca macularis (Wallr. ex Fr.)] in strawberry (Fragaria ×  ananassa Duch.) estimated by exploring mixed and spatial models and pedigree information. Theor Appl Genet 111:256–264

    PubMed  CAS  Google Scholar 

  • De Boer IJM, Hoeschele I (1993) Genetic evaluation methods for populations with dominance and inbreeding. Theor Appl Genet 86:245–258

    Google Scholar 

  • Dietl G, Wessely J, Rader I, Langhammer M (1998) Estimation of genetic parameters for pigs based on crossbred offspring tested on farms. Achiv Anim Breed 41:291–298

    Google Scholar 

  • Digby PGN, Kempton RA (1987) Multivariate analysis of ecological communities. Chapman and Hall, London

    Google Scholar 

  • Durel CE, Laurens F, Fouillet A, Lespinasse Y (1998) Utilization of pedigree information to estimate genetic parameters from large unbalanced data sets in apple. Theor Appl Genet 96:1077–1085

    Google Scholar 

  • Dutkowski GW, Costa e Silva J, Gilmour AR, Lopez GA (2002) Spatial analysis methods for forest genetic trials. Can J Forest Res 32:2201–2214

    Google Scholar 

  • Eagles HA, Moody DB (2004) Using unbalanced data from a barley breeding program to estimate gene effects: Ha2, Ha4, and sdw1 genes. Aust J Agr Res 55:379–387

    CAS  Google Scholar 

  • Edwards JW, Jannink JL (2006) Bayesian modeling of heterogeneous error and genotype ×  environment interaction variances. Crop Sci 46:820–833

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) An introduction to quantitative genetics, 4th edn. Prentice Hall, London

    Google Scholar 

  • Federer WT (1998) Recovery of interblock, intergradient, and intervarietal information in incomplete block and lattice rectangle designed experiments. Biometrics 54:471–481

    Google Scholar 

  • Flachenecker C, Frisch M, Falke KC, Melchinger AE (2005) Trends in population parameters and best linear unbiased prediction of progeny performance in a European F2 maize population under modified recurrent full-sib selection. Theor Appl Genet 112:483–491

    PubMed  Google Scholar 

  • Frensham AB, Cullis BR, Verbyla AP (1997) Genotype by environment variance heterogeneity in a two-stage analysis. Biometrics 53:1373–1383

    Google Scholar 

  • Gallais A (1980) Is Fisher’s model necessary for the theory of population improvement? Theor Appl Genet 58:177–180

    Google Scholar 

  • Gauch HG (1988) Model selection and validation for yield trials with interaction. Biometrics 44:705–715

    Google Scholar 

  • Gianola D, Fernando RL (1986) Bayesian methods in animal breeding theory. J Anim Sci 63:217–244

    Google Scholar 

  • Gilmour AR, Cullis BR, Gogel B, Welham SJ, Thompson R (2005) ASReml, user guide Release 2.0. VSN International Ltd, Hemel Hempstead

    Google Scholar 

  • Goddard M (1986) Discussion summary Part VI: Selection and non-random mating. In: Gianola D, Hammond K (eds) Advances in statistical methods for genetic improvement of lifestock. Springer, Berlin, pp 474–475

    Google Scholar 

  • Henderson CR (1952) Specific and general combining ability. In: Gowen JW (ed) Heterosis. Iowa State College Press, Ames, pp 352–370

    Google Scholar 

  • Henderson CR (1975) Best linear unbiased prediction under a selection model. Biometrics 31:423–447

    PubMed  CAS  Google Scholar 

  • Henderson CR (1976) A simple method for computing the inverse of a numerator relationship matrix used in the prediction of breeding values. Biometrics 32:69–82

    Google Scholar 

  • Henderson CR (1977) Prediction of the merits of single crosses. Theor Appl Genet 49:273–282

    Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph.

  • Henderson CR (1985) Best linear unbiased prediction of non-additive genetic merits in non-inbred populations. J Anim Sci 60:111–117

    Google Scholar 

  • Henderson CR (1986) Statistical methods in animal improvement: Historical Overview. In: Gianola D, Hammond K (eds) Advances in statistical methods for genetic improvement of lifestock. Springer, Berlin, pp 2–14

    Google Scholar 

  • Henderson CR, Quaas RL (1976) Multiple trait evaluation using relatives’ records. J Anim Sci 43:1188–1197

    Google Scholar 

  • Hill RR Jr, Rosenberger JL (1985) Methods for combining data from germplasm evaluation trials. Crop Sci 25:467–470

    Article  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Houseman EA, Coull BA, Ryan LM (2006) A functional-based distribution diagnostic for a linear model with correlated outcomes. Biometrika 93:911–926

    Google Scholar 

  • Im S, Fernando RL, Gianola D (1989) Likelihood inferences in animal breeding under selection: A missing-data theory view point. Genet Sel Evol 21:399–414

    Google Scholar 

  • James W, Stein C (1961) Estimation with quadratic loss. In: Proc Fourth Berkeley Symp Math Statist Probab 1. University of California Press, Berkeley, pp 361–379

  • Jamrozik J, Fatehi J, Schaeffer LR (2007) Application of robust procedures for estimation of breeding values in multiple-trait random regression test-day model. J Anim Breed Genet 124:3–11

    PubMed  CAS  Google Scholar 

  • Jannink JL, Bink MCAM, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trend Plant Sci 6:337–342

    CAS  Google Scholar 

  • Jannink JL (2007) QTL by genetic background interaction. Application to predicting progeny value. Euphytica (this issue)

  • John JA, Williams ER (1995) Cyclic and computer generated designs. Chapman and Hall, London

    Google Scholar 

  • Lee Y, Nelder JA, Pawitan Y (2006) Generalized linear models with random effects. Unified analysis via H-likelihood. Chapman and Hall, London

    Google Scholar 

  • Little RJA, Rubin DB (1987) Statistical analysis with incomplete data. Wiley, New York

    Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with incomplete data, Second edition. Wiley, New York

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Melchinger AE (1988) Means, variances, and covariances between relatives in hybrid populations with disequilibrium in the parent populations. In: Weir BS, Eisen EJ, et al (eds) Proc 2nd Int Conf Quantit Genet Raleigh, NC 31 May-5 June 1987, Sinauer Assoc, Sunderland MA, pp 400–415

  • Meuwissen THE, Luo Z (1992) Computing inbreeding coefficients in large populations. Genet Sel Evol 24:305–313

    Google Scholar 

  • Miller A (2002) Subset selection in regression, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Moreno-Gonzalez J, Crossa J, Cornelius PL (2003) Additive main effects and multiplicative interaction model: II. Theory on shrinkage factors for predicting cell means. Crop Sci 43:1976–1982

    Article  Google Scholar 

  • Moreno-Gonzalez J, Crossa J, Cornelius PL (2004) Genotype ×  environment interaction in multi-environment trials using shrinkage factors for ammi models. Euphytica 137:119–127

    Google Scholar 

  • Mrode RA (1996) Linear models for the prediction of animal breeding values. CAB International, Wallingford

    Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Oakey H, Verbyla A, Pitchford W, Cullis B, Kuchel H (2006) Joint modelling of additive and non-additive genetic line effects in single field trials. Theor Appl Genet 113:809–819

    PubMed  Google Scholar 

  • Panter DM, Allen FL (1995a) Using best linear unbiased predictions to enhance breeding for yield in soybean. 1. Choosing parents. Crop Sci 35:397–405

    Article  Google Scholar 

  • Panter DM, Allen FL (1995b) Using best linear unbiased predictions to enhance breeding for yield in soybean. 2. Selection of superior crosses from a limited number of yield trials. Crop Sci 35:405–410

    Article  Google Scholar 

  • Pattee HE, Isleib TG, Gorbet DG, Giesbrecht FG, Cui Z (2001) Parent selection in breeding for roasted peanut flavor quality. Peanut Sci 28:51–58

    Article  Google Scholar 

  • Pattee HE, Isleib TG, Giesbrecht FG, Cui Z (2002) Prediction of parental genetic compatibility to enhance flavor attributes of peanuts. ACS Sym Ser 829:217–230

    CAS  Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    Google Scholar 

  • Parisseaux B, Bernardo R (2004) In silico mapping of quantitative trait loci in maize. Theor Appl Genet 109:508–514

    PubMed  CAS  Google Scholar 

  • Persson T, Andersson B (2004) Accuracy of single- and multiple-trait REML evaluation of data including non-random missing records. Silvae Genet 53:135–139

    Google Scholar 

  • Piepho HP (1994) Best linear unbiased prediction (BLUP) for regional yield trials: A comparison to additive main effects multiplicative interaction (AMMI) analysis. Theor Appl Genet 89:647–654

    Google Scholar 

  • Piepho HP (1997) Analyzing genotype-environment data by mixed models with multiplicative effects. Biometrics 53:761–766

    Google Scholar 

  • Piepho HP (1998) Empirical best linear unbiased prediction in cultivar trials using factor analytic variance-covariance structures. Theor Appl Genet 97:195–201

    Google Scholar 

  • Piepho HP, Büchse A, Emrich K (2003) A hitchhiker’s guide to the mixed model analysis of randomized experiments. J Agron Crop Sci 189:310–322

    Google Scholar 

  • Piepho HP, Büchse A, Richter C (2004) A mixed modelling approach to randomized experiments with repeated measures. J Agron Crop Sci 190:230–247

    Google Scholar 

  • Piepho HP, Möhring J (2005) Best linear unbiased prediction for subdivided target regions. Crop Sci 45:1151–1159

    Google Scholar 

  • Piepho HP, Möhring J (2006) Selection in cultivar trials—is it ignorable? Crop Sci 146:193–202

    Google Scholar 

  • Piepho HP, Möhring J (2007) On weighting in two-stage analyses of series of experiments. Biuletyn Oceny Odmian (in press).

  • Piepho HP, Pillen K (2004) Mixed modelling for QTL ×  environment interaction analysis. Euphytica 137:147–153

    CAS  Google Scholar 

  • Piepho HP, Williams ER, Fleck M (2006) A note on the analysis of designed experiments with complex treatment structure. HortScience 41:446–452

    Google Scholar 

  • Piepho HP, Williams ER (2006) A comparison of experimental designs for selection in breeding trials with nested treatment structure. Theor Appl Genet 113:1505–1513

    PubMed  CAS  Google Scholar 

  • Purba AR, Flori A, Baudouin L, Hamon S (2001) Prediction of oil palm (Elaeis guineesis, Jacq.) agronomic performances using best linear unbiased prediction (BLUP). Theor Appl Genet 102:787–792

    Google Scholar 

  • Reis AJS, Chaves LJ, Duarte JB, Brasil EM (2005) Prediction of hybrid means from partial circulant diallel table using the ordinary least square and the mixed model methods. Genet Mol Biol 28:314–320

    Google Scholar 

  • Resende RMS, Jank L, do Valle CB, Bonato ALV (2004) Biometrical analysis and selection of tetraploid progenies of Panicum maximum using mixed model methods. Pesqui Agropecu Bras 39: 335–341

    Google Scholar 

  • Robinson GK (1991) That BLUP is a good thing—the estimation of random effects. Stat Sci 6:15–51

    Google Scholar 

  • Rubin DB (1976) Inference and missing data. Biometrika 63:581–592

    Google Scholar 

  • Santos AH, Bearoti E, Ferreira DF, da Silva Filho JL, (2002) Simulation of mixed models in augmented block design. Sci Agr 59:483–489

    Google Scholar 

  • Schabenberger O, Gotway CA (2005) Statistical methods for spatial data analysis. CRC Press, Boca Raton

    Google Scholar 

  • Schenkel FS, Schaeffer LR, Boettcher PJ (2002) Comparison between estimation of breeding values and fixed effects using Bayesian and empirical BLUP estimation under selection on parents and missing pedigree information. Genet Sel Evol 34:41–59

    PubMed  Google Scholar 

  • Schnell FW (1965) Die Covarianz zwischen Verwandten in einer gen-orthogonalen Population. I. Allgemeine Theorie. Biometr Z 7:1–49

    CAS  Google Scholar 

  • Searle SR, Casella G, McCulloch CE (1992) Variance components. Wiley, New York

    Google Scholar 

  • Silva JCE, Wellendorf H, Borralho NMG (2000) Prediction of breeding values and expected genetic gains in diameter growth, wood density and spiral grain from parental selection in Picea abies (L.) KARST. Silvae Genet 49:102–109

    Google Scholar 

  • Simeao RM, Sturion JA, de Resende MDV, Fernandes JSC, Neiverth DD, Ulbrich AL (2002) Avaliação genética em erva-mate pelo procedimento BLUP individual multivariado sob interação genótipo x ambiente. Pesqui Agropecu Bras 37:1589–1596

    Google Scholar 

  • Smith AB, Cullis BR, Gilmour AR (2001a) The analysis of crop variety evaluation data in Australia. Aus N Z J Stat 43:129–145

    Google Scholar 

  • Smith AB, Cullis BR, Thompson R (2001b) Analyzing variety by environment trials using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57:1138–1147

    PubMed  CAS  Google Scholar 

  • Smith AB, Cullis BR, Thompson R (2005) The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J Agr Sci 143:449–462

    Google Scholar 

  • Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer, Berlin

    Google Scholar 

  • Sorensen DA, Kennedy BW (1984) Estimation of genetic variances from unselected and selected populations. J Anim Sci 59:1213–1223

    Google Scholar 

  • Souza VAB, Byrne DH, Taylor JF (2000) Predicted breeding values for nine plant and fruit characteristics of 28 peach genotypes. J Am Soc Horticult Sci 125:460–465

    Google Scholar 

  • Stroup WW, Mulitze DK (1991) Nearest neighbor adjusted best linear unbiased prediction. Am Stat 45:194–200

    Google Scholar 

  • Stuber CW, Cockerham CC (1966) Gene effects and variances in hybrid populations. Genetics 54:1279–1286

    PubMed  CAS  Google Scholar 

  • Tancred SJ, Zeppa AG, Cooper M, Stringer JK (1995) Heritability and patterns of inheritance of the ripening date of apples. HortScience 30:325–328

    Google Scholar 

  • Theobald CM, Talbot M, Nabugoomu F (2002) A Bayesian approach to regional and local-area prediction from crop variety trials. J Agr Biol Environ Stat 7:403–419

    Google Scholar 

  • Thompson R (1973) The estimation of variance and covariance components with an application when records are subject to culling. Biometrics 29:527–550

    Google Scholar 

  • Thompson R (1979) Sire evaluation. Biometrics 35:339–353

    Google Scholar 

  • Van der Werf JHJ, de Boer IJM (1990) Estimation of additive genetic variance when base populations are selected. J Anim Sci 68:3124–2132

    PubMed  Google Scholar 

  • Verbeke G, Lesaffre E (1996) A linear mixed-effects model with heterogeneity in the random-effects population. J Am Stat Assoc 91:217–221

    Google Scholar 

  • Viele K, Srinivasan C (2000) Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback-Leibler Information. J Stat Plan Infer 84:201–219

    Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Google Scholar 

  • White TL, Hodge GR (1989) Predicting breeding values with applications in forest tree improvement. Kluwer, Dordrecht

    Google Scholar 

  • Wolfinger RD (1996) Heterogeneous variance-covariance structures for repeated measures. J Agr Biol Environ Stat 1:205–230

    Google Scholar 

  • Wricke G, Weber WE (1986) Quantitative genetics and selection in plant breeding. De Gruyter, Berlin

    Google Scholar 

  • Xiang B, Li BL (2001) A new mixed analytical method for genetic analysis of diallel data. Can J Forest Res 31:2252–2259

    CAS  Google Scholar 

  • Xiang B, Li BL (2003) Best linear unbiased prediction of clonal breeding values and genetic values from full-sib mating designs. Can J Forest Res 33:2036–2043

    Google Scholar 

  • Xu W, Virmani SS (2000) Prediction of hybrid performance in rice: comparisons among best linear unbiased prediction (BLUP) procedure, midparent value, and molecular marker distance. Int Rice Res Notes 25:12–13

    Google Scholar 

  • Yan WK, Hunt LA, Johnson P, Stewart G, Lu X (2002) On-farm strip trials vs. replicated performance trials for cultivar evaluation. Crop Sci 42:385–392

    Article  Google Scholar 

  • Yan WK, Rajcan I (2003) Prediction of cultivar performance based on single- versus multiple-year tests in soybean. Crop Sci 43:549–555

    Article  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    PubMed  CAS  Google Scholar 

  • Zhang YM, Mao YC, Xie CQ, Smith H, Luo L, Xu SZ (2005) Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L). Genetics 169:2267–2275

    PubMed  CAS  Google Scholar 

  • Zhu J, Weir BS (1994a) Analysis of cytoplasmatic and maternal effects. I. A genetic model for diploid plant seeds and animals. Theor Appl Genet 89:153–159

    Google Scholar 

  • Zhu J, Weir BS (1994b) Analysis of cytoplasmatic and maternal effects. II. Genetic models for triploid endosperms. Theor Appl Genet 89:160–166

    Google Scholar 

  • Zhu J, Weir BS (1996a) Diallel analysis for sex-linked and maternal effects. Theor Appl Genet 92:1–9

    Google Scholar 

  • Zhu J, Weir BS (1996b) Mixed model approaches for diallel analysis based on a bio-model. Genet Res 68:233–240

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Léon and A.M. Bauer for critically reading an earler draft of this paper. Thanks are due to Tobias Schrag for providing the maize data. We are grateful to T. Calinski for helpful discussions on the spectral decomposition of variance-covariance matrices. J. Möhring was supported within the Breeding and Informatics (BRAIN) project of the Genome Analysis of the Plant Biological System (GABI) initiative (www.gabi.de). We thank all breeders of GABI-BRAIN who have provided data and information on their breeding programmes. Two anonymous referees are thanked for very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Piepho.

Additional information

This paper is dedicated to Prof. Dr. Wolfgang Köhler (University of Giessen, Germany) on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piepho, H.P., Möhring, J., Melchinger, A.E. et al. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161, 209–228 (2008). https://doi.org/10.1007/s10681-007-9449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9449-8

Keywords

Navigation