Skip to main content
Log in

Chickpea molecular breeding: New tools and concepts

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Chickpea is a cool season grain legume of exceptionally high nutritive value and most versatile food use. It is mostly grown under rain fed conditions in arid and semi-arid areas around the world. Despite growing demand and high yield potential, chickpea yield is unstable and productivity is stagnant at unacceptably low levels. Major yield increases could be achieved by development and use of cultivars that resist/tolerate abiotic and biotic stresses. In recent years the wide use of early maturing cultivars that escape drought stress led to significant increases in chickpea productivity. In the Mediterranean region, yield could be increased by shifting the sowing date from spring to winter. However, this is hampered by the sensitivity of the crop to low temperatures and the fungal pathogen Ascochyta rabiei. Drought, pod borer (Helicoverpa spp.) and the fungus Fusarium oxysporum additionally reduce harvests there and in other parts of the world. Tolerance to rising salinity will be a future advantage in many regions. Therefore, chickpea breeding focuses on increasing yield by pyramiding genes for resistance/tolerance to the fungi, to pod borer, salinity, cold and drought into elite germplasm. Progress in breeding necessitates a better understanding of the genetics underlying these traits. Marker-assisted selection (MAS) would allow a better targeting of the desired genes. Genetic mapping in chickpea, for a long time hampered by the little variability in chickpea’s genome, is today facilitated by highly polymorphic, co-dominant microsatellite-based markers. Their application for the genetic mapping of traits led to inter-laboratory comparable maps. This paper reviews the current situation of chickpea genome mapping, tagging of genes for ascochyta blight, fusarium wilt resistance and other traits, and requirements for MAS. Conventional breeding strategies to tolerate/avoid drought and chilling effects at flowering time, essential for changing from spring to winter sowing, are described. Recent approaches and future prospects for functional genomics of chickpea are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbo, S., J. Berger & N.C. Turner, 2003. Evolution of cultivated chickpea: Four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30: 1081–1087.

    Article  Google Scholar 

  • Abbo, S., N.C. Turner, R.J. French & J. Berger, 2002. Breeding for osmotic adjustment in chickpea (Cicer arietinum L.). In: J.A. McComb (Ed.), Plant Breeding for the 11th Millenium: Proceedings of the 12th Australian Plant Breed Conference, 15–20 September 2002, Australian Plant Breeding Association Inc., Perth, Western Australia, Australia, pp. 463–467.

  • Abbo, S., C. Molina, R. Jungmann, M.A. Grusak, Z. Berkovitch, Ruth Reifen, G. Kahl, P. Winter & R. Reifen, 2005. Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet 111: 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Agharkar, S.P., 1991. Medicinal Plants of Bombay Presidency, pp 62–63. Scientific Publications, Jodhpur, India.

    Google Scholar 

  • Ansari, M.A., B.A. Patel, N.L. Mhase, D.J. Patel, A. Douaik & S.B. Sharma, 2004. Tolerance of chickpea (Cicer arietinum L.) lines to root-knot nematode, Meilodogyne javanica (Treub) Chitwood. Genet Resour Crop Evol 51: 449–453.

    Article  Google Scholar 

  • Arumuganathan, K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9: 208–218.

    CAS  Google Scholar 

  • Asharf, M. & A. Waheed, 1992. Screening chickpea (Cicer arietinum L.) for salt tolerance. Tropenlandwirt 93: 45–55.

    Google Scholar 

  • Barve, M.P., T. Arie, S.S. Salimath, F.J. Muehlbauer & T.L. Peever, 2003. Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genet Biol 39: 151–167.

    Article  CAS  PubMed  Google Scholar 

  • Barz, W. & U. Mackenbrock, 1994. Constitutive and elicitation induced metabolism of isoflavones and pterocarpans in chickpea (Cicer arietinum L.) cell-suspension cultures. Plant Cell Tissue Organ Culture 38: 199–211.

    Article  CAS  Google Scholar 

  • Benko-Iseppon, A.M., P. Winter, B. Huettel, C. Staginnus, F.J. Muehlbauer & G. Kahl, 2003. Molecular markers closely linked to fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Theor Appl Genet 107: 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Berger, J., S. Abbo & N.C. Turner, 2003. Ecogeography of annual wild Cicer species: The poor state of the world collection. Crop Sci 43: 1076–1090.

    Article  Google Scholar 

  • Blum, A., 1989. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci 29: 230–233.

    Article  Google Scholar 

  • Boominathan, P., R. Shukla, A. Kumar, D. Manna, D. Negi, P.K. Verma & D. Chattopadhyay, 2004. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum. Plant Physiol 135: 1608–1620.

    Article  CAS  PubMed  Google Scholar 

  • Brading, P.A., K.E. Hammond-Kosack, J.D.G. Parr & A. Jones, 2000. Salicylic acid is not required for Cf-2- and Cf-9-dependent resistance of tomato to Cladosporium fulvum. Plant J 23: 305–318.

    Article  CAS  PubMed  Google Scholar 

  • Buhariwalla, H.K., B. Jayashree & J.H. Crouch, 2005. Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 5: 16.

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anollés, G., B.J. Bassam & P.M. Gresshoff, 1991. DNA amplification fingerprinting using short arbitrary oligonucleotide primers. Biotechnology 9: 553–557.

    Article  PubMed  Google Scholar 

  • Chandra, S., H.K. Buhariwalla, J. Kashiwagi, S. Harikrishna, K.R. Sridevi, L. Krishnamurthy, R. Serraj & J.H. Crouch, 2004. Identifying QTL-linked markers in marker-deficient crops. In: International Crop Science Congress, 26 September–1 October, Brisbane, Australia.

  • Charles, M.T., R. Dominique, J. Kumar & O.P. Dangi, 2002. A preliminary study of the functional properties of chickpea leaves. In: Annual Meeting of the Canadian Society of Food and Nutrition, May 2002, Edmonton, Alberta, Canada.

  • Cho, S. & F.J. Muehlbauer, 2004. Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 64: 57–66.

    Article  CAS  Google Scholar 

  • Cho, S., J. Kumar, J.F. Shultz, K. Anupama, F. Tefera & F.J. Muehlbauer, 2002. Mapping genes for double podding and other morphological traits in chickpea. Euphytica 125: 285–292.

    Article  Google Scholar 

  • Cho, S., W. Chen & F.J. Muehlbauer, 2004. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109: 733–739.

    Article  PubMed  Google Scholar 

  • Choumane, W., P. Winter, F. Weigand & G. Kahl, 2000. Conservation and variability of sequence-tagged microsatellite sites (STMSs) from chickpea (Cicer arietinum L.) within the genus Cicer. Theor Appl Genet 101: 269–278.

    Article  CAS  Google Scholar 

  • Clarke, H. & K.H.M. Siddique, 2003. Chilling tolerance in chickpea – Novel methods for crop improvement. In: R.N. Sharma, M. Yasin, S.L. Swami, M.A. Khan & A.J. William (Eds.), International Chickpea Conference, Indira Ghandhi Agricultural University, Raipur, India, pp. 5–12.

  • Clarke, H. & K.H.M. Siddique, 2004. Response of chickpea genotypes to low temperature stress during reproductive development. Field Crops Res 90: 323–334.

    Article  Google Scholar 

  • Clarke, H., T.N. Khan & K.H.M. Siddique, 2004a. Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. Euphytica 139: 65–74.

    Article  Google Scholar 

  • Clarke, H., I. Kuo, J. Kuo & K.H.M. Siddique, 2004b. Abortion and stages for embryo rescue following wide crosses between chickpea (Cicer arietinum L.) and C. bijugum (K.H. Rech.). In: 5th European Conference on Grain Legumes, AEP, Dijon, France, p. 192.

  • Cobos, M.J., M. Iruela, J. Rubio, T. Millán, J.I. Cubero & J. Gil, 2004. Genetic analyses of flowering time in a chickpea interspecific cross (Cicer arietinum L. × C. reticulatum Lad.). In: 5th European Conference on Grain Legumes, AEP, Dijon, France, p. 263.

  • Cobos, M.J., M.J. Fernández, J. Rubio, M. Kharrat, M.T. Moreno, J. Gil & T. Millán, 2005. A linkage map in chickpea (Cicer arietinum L.) in two populations from Kabuli × Desi crosses: Location of a resistance gene for fusarium wilt race 0. Theor Appl Genet 110: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  • Collard, B.C.Y., E.C.K. Pang, P.K. Ades & P.W.J. Taylor, 2003. Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea, Theor Appl Genet 107: 719–729.

    Article  CAS  PubMed  Google Scholar 

  • Comai, L., K. Young, J.T. Bradley, S.H. Reynolds, E.A. Green, C.A. Codomo, L.C. Enns, J.E. Johnson, C. Burtner, A.R. Odden & S. Henikoff, 2004. Efficient discovery of polymorphisms in natural populations by EcoTILLING. Plant J (published online at DOI: 10.1111/j.1365–313X.2003.01999.x)

  • Cornels, H., Y. Ichinose & W. Barz, 2000. Characterization of cDNAs encoding two glycine-rich proteins in chickpea (Cicer arietinum L.): Accumulation in response to fungal infection and other stress factors. Plant Sci 154: 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Croser, J.S., F. Ahmad, H.J. Clarke & K.H.M. Siddique, 2003a. Utilization of wild Cicer in chickpea improvement–Progress, constraints and prospects. Aust J Agric Res 54: 429–444.

    Article  Google Scholar 

  • Croser, J.S., H.J. Clarke, K.H.M. Siddique & T.N. Khan, 2003b. Low temperature stress: Implications for chickpea (Cicer arietinum L.) improvement. Crit Rev Plant Sci 22: 185–219.

    Google Scholar 

  • Dey, S.K. & G. Singh, 1993. Resistance to ascochyta blight in chickpea–Genetic basis. Euphytica 68: 147–153.

    Article  Google Scholar 

  • Díaz-Franco, A. & P. Pérez-García, 1995. Control químico de la roya y la rabia del garbanzo y su influencia en el rendimiento del grano. Revista Mexicana de Fitopatología 13: 123–125.

    Google Scholar 

  • Drenkard, E., B.G. Richter, S. Rozen, L.M. Stutius, N.A. Angell, M. Mindrinos, R.J. Cho, P.J. Oefner, R.W. Davis & F.M. Ausubel, 2000. A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124: 1483–1492.

    Article  CAS  PubMed  Google Scholar 

  • Dua, R.P. & P.C. Sharma, 1995. Salinity tolerance of kabuli and desi chickpea genotypes. Int. Chickpea Pigeonpea Newslett 2: 19–22.

    Google Scholar 

  • FAOSTAT data, 2005. http://faostat.fao.org/faostat/collections?subset=agriculture. Last updated February 2005.

  • Flandez-Galvez, H., P.K. Ades, R. Ford, E.C.K. Pang & P.W.J. Taylor, 2003a. QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107: 1257–1265.

    Article  CAS  Google Scholar 

  • Flandez-Galvez, H., R. Ford, E.C.K. Pang & P.W.J. Taylor, 2003b. An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence-tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106: 1447–1456.

    CAS  Google Scholar 

  • Gaur, P.M. & A.E. Slinkard, 1990. Genetic control and linkage relations of additional isozyme markers in chickpea. Theor Appl Genet 80: 648–656.

    Article  CAS  Google Scholar 

  • Gil, J. & J.I. Cubero, 1993. Inheritance of seed coat thickness in chickpea (Cicer arietinum L.) and its evolutionary implications. Plant Breed 111: 257–260.

    Article  Google Scholar 

  • Gil, J., S. Nadal, D. Luna, M.T. Moreno & A. de Haro, 1996. Variability of some physico-chemical characters in Desi and Kabuli chickpea types. J Sci Food Agric 71: 179–184.

    Article  CAS  Google Scholar 

  • Gortner, G., M. Nenno, K. Weising, D. Zink, W. Nagl & G. Kahl, 1998. Chromosomal localization and distribution of simple sequence repeats and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. Chromosome Res 6: 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Greco, N., 1987. Nematodes and their control in chickpea. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 271–282. CAB International, UK.

    Google Scholar 

  • Gumber, R.K., J. Kumar & M.P. Haware, 1995. Inheritance of resistance to fusarium wilt in chickpea. Plant Breed 114: 277–279.

    Article  Google Scholar 

  • Halila, M.H., N.I. Hadad, B. Sakr & I. Kusmenoglu, 2000. Regional Reviews–Region 5 Near East. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, pp. 107–114. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Hanselle, T., Y. Ichinose & W. Barz, 2001. Biochemical and molecular biological studies on infection (Ascochyta rabiei)-induced thaumatin-like proteins from chickpea plants (Cicer arietinum L.). Z Naturforsch [C] 56: 1095–1107.

    CAS  Google Scholar 

  • Hanselle, T., C. Schwenger-Erger & W. Barz, 1999. Isolation of a full length chalcone synthase cDNA (Accession No. AJ012822) from infected chickpea plants (Cicer arietinum L.). Plant Physiol 120: 934–934.

    Google Scholar 

  • Haware, M.P., 1998. Diseases of chickpea. In: The Pathology of Food and Pasture Legumes, pp. 473–516. CAB International, UK.

    Google Scholar 

  • Haware, M.P. & Y.L. Nene, 1982. Races of Fusarium oxysporum f. sp. ciceris. Plant Dis 66: 809–810.

    Article  Google Scholar 

  • Hayashi, K., N. Hashimoto, M. Daigen & I. Ashikawa, 2004. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108: 1212–1220.

    Article  CAS  PubMed  Google Scholar 

  • Hein, F., S. Overkamp & W. Barz, 2000. Cloning and characterization of a full-length cDNA (accession no. AJ250836) encoding phenylalanine ammonia-lyase from chickpea (PGR00-038). Plant Physiol 122: 1458–1458.

    Google Scholar 

  • Hoehl, B., M. Pfautsch & W. Barz, 1990. Histology of disease development in resistant and susceptible cultivars of chickpea (Cicer arietinum L.) inoculated with spores of Ascochyta rabiei. J Phytopathol 129: 31–45.

    Google Scholar 

  • Hong, Z., K. Lakkineni, Z. Zhang & D.P.S. Verma, 2000. Removal of feedback inhibition of 1 pyrroline-5-carboxylate synthetase (P5CS) results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Hormaza, J.I. & M. Herrero, 1996. Male gametophytic selection as a plant breeding tool. Sci Hort 65: 321–333.

    Article  Google Scholar 

  • Hovav, R., K.C. Upadhyaya, A. Beharav & S. Abbo, 2003. Major flowering time gene and polygene effects on chickpea seed weight. Plant Breed 122: 539–541.

    Article  Google Scholar 

  • Hüttel, B., J. Santra, F.J. Muehlbauer & G. Kahl, 2002. Resistance gene analogues of chickpea (Cicer arietinum L.): Isolation, genetic mapping and association with a Fusarium resistance gene cluster. Theor Appl Genet 105: 479–490.

    Article  CAS  Google Scholar 

  • Hüttel, B., P. Winter, K. Weising, W. Choumane, F. Weigand & G. Kahl, 1999. Sequence-tagged microsatellite-site markers for chickpea (Cicer arietinum L.). Genome 42: 210–217.

    Article  PubMed  Google Scholar 

  • Ibrikci, H., S. Knewtson & M.A. Grusak, 2003. Chickpea leaves as a vegetable green for humans: Evaluation of mineral composition. J Sci Food Agric 83: 945–950.

    Article  CAS  Google Scholar 

  • Ichinose, Y., K. Tiemann, C. Schwenger-Erger, K. Toyoda, F. Hein, T. Hanselle, H. Cornels & W. Barz, 2000. Genes expressed in Ascochyta rabiei-inoculated chickpea plants and elicited cell cultures as detected by differential cDNA-hybridization. Z Naturforsch [C] 55: 44–54.

    CAS  Google Scholar 

  • Ichinose, Y., K. Toyoda & W. Barz, 1999. cDNA cloning and gene expression of three small GTP-binding proteins in defense response of chickpea. Biochem Biophys Acta 1489: 462–466.

    CAS  PubMed  Google Scholar 

  • ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), 1994. Cold tolerant chickpea varieties ICCV 88503, ICCV 88506, ICCV 88510. Plant Mater Descript 53.

  • ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), 2003. In: Archival Report: Global Theme Biotechnology, pp. 31–35. Patancheru, AP, India.

  • Iruela, M., J. Rubio, J.I. Cubero, J. Gil & T. Millán, 2002. Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor Appl Genet 104: 643–651.

    Article  CAS  PubMed  Google Scholar 

  • Iruela, M., J. Rubio, F. Barro, J.I. Cubero, T. Millán, J. Gil, 2006. Detection of two QTL for resistance to Ascochyta Blight in an intra-specific cross of chickpea (Cicer arietinum L.): Development of SCAR markers associated to resistance. Theor Appl Genet 112: 278–287.

    Article  CAS  PubMed  Google Scholar 

  • Jamil, F.F., N. Sarwar, M. Sarwar, J.A. Khan, J. Geistlinger & G. Kahl, 2001. Genetic and pathogenic diversity within Ascochyta rabiei (Pass.) Lab. populations in Pakistan causing blight of chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 57: 243–254.

    Article  CAS  Google Scholar 

  • Jana, S. & K.B. Singh, 1993. Evidence on geographical divergence in Kabuli chickpea from germplasm evaluation data. Crop Sci 33: 626–632.

    Article  Google Scholar 

  • Jayanand, B., G. Sudarsanam, & K.K. Sharma, 2003. An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro-germinated seedlings. In Vitro Cell Dev Biol Plant 39: 171–179.

    Article  Google Scholar 

  • Jayashree, B., H.K. Buhariwalla, S. Shinde, P.V. Kumar & J.H. Crouch, 2005. A legume genomics resource: The chickpea root expressed sequence tag database and bioinformatics tools. Electron J Biotechnol 8: 128–133.

    Article  CAS  Google Scholar 

  • Jiménez-Díaz, R.M., A.R. Alcalá-Jiménez, A. Hervás & J.L. Trapero-Casas, 1993. Pathogenic variability and host resistance in the Fusarium oxysporum f. sp. ciceris/C. arietinum pathosystem. In: Proceedings of the 3rd European Seminar on Fusarium Mycotoxins, Taxonomy, Pathogenicity and Host Resistance, Plant Breeding and Acclimatization, Inst, Radzikóv, Poland, pp. 87–94.

  • Jiménez-Gasco, M.M., J.A. Navez-Cortez & R.M. Jiménez-Díaz, 2004. The Fusarium oxysporum f. sp. ciceris/C. arietinum pathosystem: A case study of the evolution of plant-pathogenic fungi into races and pathotypes. Intern Microbiol 7: 95– 104.

    Google Scholar 

  • Kaiser, W.J., A.R. Alcalá-Jiménez, A. Hervás-Vargas, J.L. Trapero-Casas & R.M. Jiménez-Díaz, 1994. Screening wild species for resistance to races 0 and 5 of Fusarium oxysporum f. sp. ciceris. Plant Dis 78: 962–967.

    Article  Google Scholar 

  • Kaiser, W.J., M.D. Ramsay, K.M. Makkouk, T.W. Bretag, N. Acikgoz, J. Kumar & F.W. Nutter, 2000. Foliar diseases of cool season food legumes and their control. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, pp. 437–455. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Kanazin, V., L.F. Marek & R.C. Shoemaker, 1996. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93: 11746–11750.

    Article  CAS  PubMed  Google Scholar 

  • Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki & K. Shinozaki, 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287–291.

    Article  CAS  PubMed  Google Scholar 

  • Kathiria, K.B., D.R. Nayagapara, M.A. Vaddoria & V.K. Poshiya, 1997. Screening of chickpea genotypes for salinity tolerance during germination and early seedling growth. Gujarat Agric Univ Res J 22: 28–32.

    Google Scholar 

  • Kazan, K., F.J. Muehlbauer, N.F. Weeden & G. Ladizinsky, 1993. Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86: 417–426.

    Article  CAS  Google Scholar 

  • Khanna-Chopra, R. & S.K. Sinha, 1987. Chickpea: Physiological aspects on growth and yield. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 163–189. CAB International, Wallingford, UK.

    Google Scholar 

  • Knights, E.J. & K.H.M. Siddique, 2002. Chickpea status and production constraints in Australia. In: M. Abu Bakr, K.H.M. Siddique & C. Johansen (Eds.), Integrated Management of Botrytus Grey Mould of Chickpea in Bangladesh and Australia: Summary of Proceedings of a Project Inception Workshop, 1–2 June 2002, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, Bangladesh, pp. 33–45.

  • Kraft, J.M., M.P. Haware, H. Halila, M. Sweetingham & B. Bayaa, 2000. Soilborne diseases and their control. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, pp. 457–466. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Krishnamurthy, L., J. Kashiwagi, H.D. Upadhyaya & R. Serraj, 2003. Genetic diversity of drought-avoidance root traits in the mini-core germplasm collection of chickpea. Int Chickpea Pigeonpea Newslett 10: 21–24.

    Google Scholar 

  • Kumar, J., 1998. Inheritance of resistance to Fusarium wilt (race 2) in chickpea. Plant Breed 117: 139–142.

    Article  Google Scholar 

  • Kumar, J. & S. Abbo, 2001. Genetics of flowering time in chickpea and its bearing on productivity in the semi-arid environments. Adv Agron 72: 107–138.

    Article  CAS  Google Scholar 

  • Kumar, J. & B.V. Rao, 2001. Registration of “Superearly 96029” Chickpea. Crop Sci 41: 605–606.

    Article  Google Scholar 

  • Kumar, J., S.C. Sethi, C. Johansen, T.G. Kelley, M.M. Rahman & H.A. van Rheenen, 1996. The potential of short-duration chickpea varieties. Indian J Dryland Agric Dev 11: 28–32.

    Google Scholar 

  • Kumar, J. & H.A. van Rheenen, 2000. A major gene for time of flowering in chickpea. J Hered 91: 67–68.

    Article  CAS  PubMed  Google Scholar 

  • Ladizinsky, G. & A. Adler, 1976. The origin of chickpea Cicer arietinum L. Euphytica 25: 211–217.

    Article  Google Scholar 

  • Leport, L., N.C. Turner, R.J. French, M.D. Barr, R. Duda, S.L. Davies, D. Tennant & K.H.M. Siddique, 1999. Physiological responses of chickpea genotypes to terminal drought in a Mediterranean type environment. Eur J Agron 11: 279–291.

    Article  Google Scholar 

  • Lev-Yadun, S., A. Gopher & S. Abbo, 2000. The cradle of agriculture. Science 288: 1062–1063.

    Article  Google Scholar 

  • Lichtenzveig, J., C. Scheuring, J. Dodge, S. Abbo & H.B. Zhang, 2005. Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110: 492–510.

    Article  CAS  PubMed  Google Scholar 

  • Maas, E.V. & G.J. Hoffman, 1977. Crop salt tolerance–Current assessment. J. Irrig Drain Div Proc Am Soc Civil Eng 103: 115–134.

    Google Scholar 

  • Mackenbrock, U., W. Gunia & W. Barz, 1993. Accumulation and metabolism of medicarpin and maackiain malonylglucosides in elicited chickpea (Cicer arietinum L.) cell-suspension cultures. J Plant Physiol 142: 385–391.

    CAS  Google Scholar 

  • Maliro, M.F.A., D. McNeil, J. Kollmorgen, C. Pittock & B. Redden, 2004. Screening chickpea (Cicer arietinum L.) and wild relatives germplasm from diverse country sources for salt tolerance. In: International Crop Science Congress, 26 September–1 October, Brisbane, Australia.

  • Mallikarjuna, N., 1999. Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 110: 1–6.

    Article  Google Scholar 

  • Matsumura, H., S. Reich, A. Ito, H. Saitoh, S. Kamoun, P. Winter, G. Kahl, M. Reuter, D.H. Kruger & R. Terauchi, 2003. Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100: 15718–1523.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, M.S., A. Tullu, C.J. Simon, J. Kumar, W.J. Kaiser, J.M. Kraft & F.J. Muehlbauer, 1997. Development of a DNA marker for Fusarium wilt resistance in chickpea. Crop Sci 37: 1625–1629.

    Article  CAS  Google Scholar 

  • McIntosh, G.H. & D.L. Topping, 2000. Food legumes in human nutrition. In: R. Knight (Ed.), Linking Research and Marketing Opportunities for Pulses in the 21st Century, pp. 655–666. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Millán, T., J. Rubio, M. Iruela, K. Daly, J.I. Cubero & J. Gil, 2003. Markers associated with Ascochyta blight resistance in chickpea an their potential in marker-assisted selection. Field Crops Res 84: 373–384.

    Article  Google Scholar 

  • Moinuddin, & R. Khanna-Chopra, 2004. Osmotic adjustment in chickpea in relation to seed yield and yield parameters. Crop Sci 44: 449–455.

    Google Scholar 

  • Moreno, M.T. & J.I. Cubero, 1978. Variation in Cicer arietinum L. Euphytica 27: 465–485.

    Article  Google Scholar 

  • Morgan, J.M., 1984. Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35: 299–319.

    Article  Google Scholar 

  • Morgan, J.M., R.A. Hae & R.J. Fletcher, 1986. Genetic variation in osmoregulation in bread and durum wheats and its relationships to grain yield in a range of field environments. Aust J Agric Res 37: 449–457.

    Article  Google Scholar 

  • Morgan, J.M., M.B. Rodriguez & E.J. Knights, 1991. Adaptation to water deficit in chickpea breeding lines by osmoregulation: Relationship to grain yields in the field. Field Crops Res 27: 61–70.

    Article  Google Scholar 

  • Morjane, H., J. Geistlinger, M. Harrabi, K. Weising & G. Kahl, 1994. Oligonucleotide fingerprinting detects genetic diversity among Ascochyta rabiei islolates from a single chickpea field in Tunisia. Curr Genet 26: 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Muehlbauer, F.J. & K.B. Singh, 1987. Genetics of chickpea. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 99–125. CAB International, Wallingford, UK.

    Google Scholar 

  • Musa, A.M., D. Harris, C. Johansen & J. Kumar, 2001. Short duration chickpea to replace fallow after Aman rice: The role of on-farm seed priming in the high Barind tract of Bangladesh. Exp Agric 37: 509–521.

    Article  Google Scholar 

  • Nayyer, H., T. Bains & S. Kumar, 2005. Low temperature induced floral abortion in chickpea: Relationship to abscisic acid and cryoprotectans in reproductive organs: Environmental and Experimental Botany 53: 39–47.

    Google Scholar 

  • Nene, Y.L. & M.V. Reddy, 1987. Chickpea Diseases and their control. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 233–270. CAB International, Wallingford. UK.

    Google Scholar 

  • Nguyen, T.T., P.W.J. Taylor, R.J. Redden & R. Ford, 2004. Genetic diversity estimates in Cicer using AFLP analysis. Plant Breed 123: 173–179.

    Article  CAS  Google Scholar 

  • Or, E., R. Hovav & S. Abbo, 1999. A major gene for flowering time in chickpea. Crop Sci 39: 315–322.

    Google Scholar 

  • Otte, O., A. Pachten, F. Hein & W. Barz, 2001. Early elicitor-induced events in chickpea cells: Functional links between oxidative burst, sequential occurrence of extracellular alkalinisation and acidification, K+/H+ exchange and defense-related gene activation. Z Naturforsch [C] 56: 65–76.

    CAS  Google Scholar 

  • Overkamp, S., F. Hein & W. Barz, 2000. Cloning and characterization of eight cDNAs from chickpea (Cicer arietinum L.) cell suspension cultures. Plant Sci 155: 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Pande, S., G.K. Kishore & J.N. Rao, 2004. Evaluation of chickpea lines to dry root rot caused by Rhizoctonia bataticola. Int Chickpea Pigeonpea Newslett 11: 37–38.

    Google Scholar 

  • Paran, I. & R.W. Michelmore, 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85: 985–993.

    Article  CAS  Google Scholar 

  • Patankar, A.G., A.M. Harsulkar, A.P. Giri, V.S. Gupta, M.N. Sainani, P.K. Ranjekar & V.V. Deshpande, 1999. Diversity in inhibitors of trypsin and Helicoverpa armigera gut proteinases in chickpea (Cicer arietinum) and its wild relatives. Theor Appl Genet 99: 719–726.

    Article  CAS  Google Scholar 

  • Peever, T.L., S.S. Salimath, G. Su, W.J. Kaiser & F.J. Muehlbauer, 2004. Historical and contemporary multilocus population structure of Ascochyta rabiei (teleomorph: Didymella rabiei) in the Pacific Northwest of the United States. Mol Ecol 13: 291–309.

    Article  CAS  PubMed  Google Scholar 

  • Pfaff, T. & G. Kahl, 2003. Mapping of gene-specific markers on the genetic map of chickpea (Cicer arietinum L.). Mol Genet Genom 269: 243–251.

    CAS  Google Scholar 

  • Prajapati, R.K., R.K. Gangwar & S.S.L. Srivastava, 2003. Resistance source of chickpea against dry root rot. Farm Sci J 12: 86.

    Google Scholar 

  • Rajesh, P.N., C. Coyne, K. Meksem, D.K. Sharma, V. Gupta & F.J. Muehlbauer, 2004. Construction of a HindIII bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108: 663–669.

    Article  CAS  PubMed  Google Scholar 

  • Rajesh, P.N., A. Tullu, J. Gil, V.S. Gupta, P.K. Ranjekar & F.J. Muehlbauer, 2002. Identification of an STMS marker for the double-podding gene in chickpea. Theor Appl Genet 105: 604–607.

    Article  CAS  PubMed  Google Scholar 

  • Rakshit, S., P. Winter, M. Tekeoglu, J. Juarez Muñoz, T. Pfaff, A.M. Benko-Iseppon, F.J. Muehlbauer & G. Kahl, 2003. DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132: 23–30.

    Article  CAS  Google Scholar 

  • Ratnaparkhe, M.B., D.K. Santra, A. Tullu & F.J. Muehlbauer, 1998. Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor Appl Genet 96: 348–353.

    Article  CAS  Google Scholar 

  • Reddy, M.V. & K.B. Singh, 1984. Evaluation of a world collection of chickpea germplasm accessions for resistance to Ascochyta blight. Plant Dis 68: 900–901.

    Google Scholar 

  • Reed, W., C. Cardona, S. Sithanantham & S.S. Lateef, 1987. The chickpea insect pests and their control. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 283–318. CAB International, Wallingford, UK.

    Google Scholar 

  • Roberts, E.H., P. Hadley & R.J. Summerfield, 1985. Effect of temperature and photoperiod on flowering in chickpeas (Cicer arietinum L.). Ann Bot 55: 881–892.

    Google Scholar 

  • Roetschi, A., A. Si-Ammour, L. Belbahri, F. Mauch & B. Mauch-Mani, 2001. Characterization of an ArabidopsisPhytophthora pathosystem: Resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J 28: 293–305.

    Article  CAS  PubMed  Google Scholar 

  • Romo, S., E. Labrador & B. Dopico, 2001. Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiol Biochem 39: 1017–1026.

    Article  CAS  Google Scholar 

  • Rubiales, D.J., I. Moreno, M.T. Moreno & J.C. Sillero, 2001. Identification of partial resistance to chickpea rust (Uromyces ciceris-arietini). In: Proceedings of 4th European Conference on Grain Legumes, AEP, Cracow, Poland, pp. 194–195.

  • Rubiales, D., A. Pérez de Luque, D.M. Joel, C. Alcantara & J.C. Sillero, 2003. Characterization of resistance in chickpea to broomrape (Orobanche crenata). Weed Sci 51: 702–707.

    CAS  Google Scholar 

  • Rubiales, D., J.C. Sillero & M.T. Moreno, 1999. Resistance to Orobanche crenatam in chickpea. In: J.I. Cubero, M.T. Moreno, D. Rubiales & J.C. (Eds.), Resistance to Broomrape. The State of the Art, Junta de Andalucía, Sevilla, Spain.

  • Rubio, J., F. Flores, M.T. Moreno, J.I. Cubero & J. Gil, 2004. Effects of the erect/bushy habit, single/double pod and late/early flowering genes on yield and seed size and their stability in chickpea. Field Crops Res 90: 255–262.

    Article  Google Scholar 

  • Rubio, J., E. Moussa, M. Kharrat, M.T. Moreno, T. Millán & J. Gil, 2003. Two genes and linked RAPD markers involved in resistance to Fusarium oxysporum f. sp. ciceris race 0 in chickpea. Plant Breed 122: 188–191.

    Article  CAS  Google Scholar 

  • Sandhu, J.S. & S.J. ArasaKesary, 2003. Evaluation of chickpea genotypes for cold tolerance. Int Chickpea Pigeonpea Newslett 10: 9–12.

    Google Scholar 

  • Santra, D.K., M. Tekeoglu, M. Ratnaparkhe, W.J. Kaiser & F.J. Muehlbauer, 2000. Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci 40, 1606–1612.

    Article  CAS  Google Scholar 

  • Savithri, K.S., P.S. Ganapathy & S.K. Sinha, 1980. Sensitivity to low tolerance in pollen germination and fruit set in Cicer arietinum L. J Exp Bot 31: 475–481.

    Google Scholar 

  • Saxena, N.P., 1987. Screening for adaptation to drought: Case studies with chickpea and pigeonpea. In: Adaptation of chickpea and pigeonpea to abiotic stresses. Proceedings of Consultant’s Workshop, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp. 63–76.

  • Saxena, N.P., 2003. Management of drought in chickpea–A holistic approach. In: N.P. Saxena (Ed.), Management of Agricultural Drought–Agronomic and Genetic Options, pp. 103–122. Oxford & IBH Publising Co. Pvt. Ltd., New Delhi, India.

    Google Scholar 

  • Saxena, N.P., L. Krishnamurthy & C. Johansen, 1993. Registration of a drought resistant chickpea germplasm. Crop Sci 33: 1424.

    Article  Google Scholar 

  • Schadt, E.E., S.A. Monks, T.A. Drake, A.J. Lusis, N. Che, V. Colinayo, T.G. Ruff, S.B. Milligan J.R. Lamb, G. Cavet, P.S. Linsley, M. Mao, R.B. Stoughton & S.H. Friend, 2003. Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Serraj, R., L. Krishnamurthy & H.D. Upadhyaya, 2004. Screening chickpea mini-core germplasm for tolerance to soil salinity. Int Chickpea Pigeonpea Newslett 11: 29–32.

    Google Scholar 

  • Sethi, S.C., D.E. Byth, C.L.L. Gowda & J.M. Green, 1981. Photoperiodic response and accelerated generation turnover in chickpea. Field Crops Res 4: 215–225.

    Article  Google Scholar 

  • Shan, F., H. Clarke, G.J. Yang, J. Plummer & K.H.M. Siddique, 2004. Development of DNA fingerprinting keys for discrimination of Cicer equinospermum (PH Davis) accessions using AFLP markers. Australian Journal of Agricultural Research 55: 947–952.

    Article  CAS  Google Scholar 

  • Shan, F., H. Clarke, J. Plummer, G. Yan & K.H.M. Siddique, 2005. Geographical patterns of genetic variation in the world collections of wild annual Cicer characterised by amplified fragment length polymorphisms. Theor Appl Genet, 110: 381–391.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, H.C., G. Pampathy, S.K. Lanka & T.J. Ridsdill-Smith, 2005. Antibiosis mechanism of resistance to legume pod borer, Helicoverpa armigera in annual wild relatives of chickpeas. Euphytica 142: 107–117.

    Google Scholar 

  • Sharma, K.D., P. Winter, G. Kahl & F.J. Muehlbauer, 2004. Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108: 1243–1248.

    Article  CAS  PubMed  Google Scholar 

  • Shen, K.A., B.C. Meyers, N. Islam-Faridi, D.M. Stelly & R.W. Michelmore, 1998. Resistance gene candidates identified using PCR with degenerate oligonucleotide primers map to resistance gene clusters in lettuce. Mol Plant Microbe Interact 11: 815–823.

    CAS  PubMed  Google Scholar 

  • Siddique, K.H.M., S.P. Loss & B.D. Thomson, 2003. Cool season grain legumes in dryland Mediterranean environments of Western Australia: Significance of early flowering. In: N.P. Saxena (Ed.), Management of Agricultural Drought, pp. 151–161. Science Publishers, Enfield (NH), USA.

    Google Scholar 

  • Siddique, K.H.M. & R.H. Sedgley, 1986. Chickpea (Cicer arietinum L.), a potential grain legume for South-Western Australia: Seasonal growth and yield. Aust J Agric Res 37: 245–261.

    Article  Google Scholar 

  • Singh, K.B., 1987. Chickpea breeding. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 127–162. CAB International, Wallingford, UK.

    Google Scholar 

  • Singh, K.B., 1993. Problems and prospects of stress resistance breeding in chickpea. In: K.B. Singh & M.C. Saxena (Eds.), Breeding for Stress Tolerance in Cool Season Food Legumes, pp. 17–37. Wiley, Chichester.

    Google Scholar 

  • Singh, K.B. & M.V. Reddy, 1983. Inheritance of resistance to ascochyta blight in chickpea. Crop Sci 23: 9–10.

    Article  Google Scholar 

  • Singh, K.B. & M.V. Reddy, 1996. Improving chickpea yield by incorporating resistance to ascochyta blight. Theor Appl Genet 92: 509–515.

    Article  Google Scholar 

  • Singh, K.B., G.C. Hawtin, Y.L. Nene & M.V. Reddy, 1981. Resistance in chickpeas to Ascochyta rabiei. Plant Dis 65: 586–587.

    Article  Google Scholar 

  • Singh, K.B., L. Holly & G. Bejiga, 1991. A Catalog of Kabuli Chickpea Germplasm. International Center for Agricultural Research in Dry Areas, Aleppo, Syria.

  • Singh, K.B., R.S. Malhotra, M.H. Halila, E.J. Knights & M.M. Verma., 1994. Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica, 73: 137–149.

    Article  Google Scholar 

  • Singh, K.B., R.S. Malhotra & M.C. Saxena, 1995. Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci 35: 1491–1497.

    Article  Google Scholar 

  • Singh, K.B., R.S. Malhotra, M.C. Saxena & G. Bejiga, 1997. Superiority of winter sowing over traditional spring sowing of chickpea in the Mediterranean region. Agron J 89: 112–118.

    Article  Google Scholar 

  • Singh, K.B., B. Ocampo & L.D. Robertson, 1998. Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol 45: 9–17.

    Article  Google Scholar 

  • Singh, K.B., M.V. Reddy & M.P. Haware., 1992. Breeding for resistance to ascochyta blight in chickpea. In: K.B. Singh & M.C. Saxena (Eds.), Disease Resistance in Chickpea, pp. 23–54. ICARDA, Aleppo, Syria.

    Google Scholar 

  • Srinivasan, A., C. Johansen & N.P. Saxena, 1998. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): Characterisation of stress and genetic variation in pod set. Field Crops Res 57: 181–193.

    Article  Google Scholar 

  • Srinivasan, A., N.P. Saxena & C. Johansen, 1999. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): Genetic variation in gamete development and function. Field Crops Res 60: 209–222.

    Article  Google Scholar 

  • Staginnus, C., B. Hüttel, C. Desel, T. Schmidt & G. Kahl, 2001. A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 9: 591–605.

    Article  CAS  PubMed  Google Scholar 

  • Staginnus, C., P. Winter, C. Desel, T. Schmidt & G. Kahl, 1999. Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Mol Biol 39: 1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Summerfield, R.J., F.R. Minchin, E.H. Roberts & P. Hadley, 1981. Adaptation to contrasting aerial environment in chickpea (Cicer arietinum L.). Tropic Agric 58: 97–113.

    Google Scholar 

  • Tekeoglu, M., D.K. Santra, W.J. Kaiser & F.J. Muehlbauer, 2000a. Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. Crop Sci 40: 1251–1256.

    Article  Google Scholar 

  • Tekeoglu, M., A. Tullu, W.J. Kaiser & F.J. Muehlbauer, 2000b. Inheritance and linkage of two genes that confer resistance to fusarium wilt in chickpea. Crop Sci 40: 1247–1251.

    Article  CAS  Google Scholar 

  • Tekeoglu, M., P.N. Rajesh & F.J. Muehlbauer, 2002. Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105: 847–854.

    Article  CAS  PubMed  Google Scholar 

  • Tewari, S.K. & M.P. Pandey, 1986. Genetics of resistance to ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 35: 211–215.

    Article  Google Scholar 

  • Tiemann, K., D. Inze, M. Van Montagu & W. Barz, 1991. Pterocarpan phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer arietinum L.) cell cultures. Purification, characterization and cDNA cloning of NADPH: Isoflavone oxidoreductase. Eur J Biochem 15: 751–757.

    Google Scholar 

  • Tullu, A., F.J. Muehlbauer, C.J. Simon, M.S. Mayer, J. Kumar, W.J. Kaiser & J.M. Kraft, 1998. Inheritance and linkage of a gene for resistance to race 4 of fusarium wilt and RAPD markers in chickpea. Euphytica 102: 227–232.

    Article  CAS  Google Scholar 

  • Turner, N.C., G.C. Wright, & K.H.M. Siddique, 2001. Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71: 123–231.

    Google Scholar 

  • Udupa, S.M. & M. Baum, 2003. Genetic dissection of pathotype-specific resistance to ascochyta blight resistance in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106: 1196–1202.

    CAS  PubMed  Google Scholar 

  • USDA-ARS, Beltville., 2004. Phytochemical Databases: Chickpea. http://www.ars-grin.gov/cgi-bin/duke/ethnobot.pl.

  • van der Maesen, L.J.G., 1972. Cicer L., a monograph of the genus, with an special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. In: H. Veenmam & Q. Zonen (Eds.), 342 pp. Mededlingen Landbouwhogeschool (Communication Agricultural University), Wageningen.

  • van der Maesen, L.J.G. & R.P.S. Pundir, 1984. Availability and use of wild Cicer germplasm. Plant Genet Resour Newslett 57: 19–24.

    Google Scholar 

  • van Rheenen, H.A., M.V. Reddy, J. Kumar & M.P. Haware, 1992. Breeding for resistance to soil-borne diseases in chickpea. In: K.B. Singh and M.C. Saxena (Eds.), Disease Resistance in Chickpea, pp. 55–70. ICARDA, Aleppo, Syria.

    Google Scholar 

  • Vlácilová, K., D. Ohri, J. Vrána, J. Cihaliková, M. Kubaláková, G. Kahl & J. Dolezel, 2002. Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Res 10: 695–706.

    Article  PubMed  Google Scholar 

  • Williams, P.C. & U. Singh, 1987. The Chickpea–Nutritional quality and the evaluation of quality. In: M.C. Saxena & K.B. Singh (Eds.), The Chickpea, pp. 329–356. CAB International, Wallingford, UK.

    Google Scholar 

  • Winter, P., T. Pfaff, S.M. Udupa, B. Hüttel, P.C. Sharma, S. Sahim, R. Arreguin-Espinoza, F. Weigand, F.J. Muehlbauer & G. Kahl, 1999. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262: 90–101.

    Article  CAS  PubMed  Google Scholar 

  • Winter, P., A.-M. Benko-Iseppon, B. Hüttel, M. Ratnaparkhe, A. Tullu, G. Sonnante, T. Pfaff, M. Tekeoglu, D. Santra, V.J. Sant, P.N. Rajesh, G. Kahl & F.J. Muehlbauer, 2000. A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulum cross: Localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101: 1155–1163.

    Article  CAS  Google Scholar 

  • Winter, P., C. Staginnus, P.C. Sharma & G. Kahl, 2003. Organisation and genetic mapping of the chickpea genome. In: P.K. Jaiwal & R.P. Singh (Eds.), Improvement Strategies of Leguminosae Biotechnology, pp. 303–351. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Yang, H., J.G. Boersma, M. You, B.J. Buirchell & M.W. Sweetingham, 2004. Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 14: 145–151.

    Article  CAS  Google Scholar 

  • Yang, H., M.W. Sweetingham, W.A. Cowling & P.M.C. Smith, 2001. DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.). Mol Breed 7: 203–209.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Millan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millan, T., Clarke, H.J., Siddique, K.H.M. et al. Chickpea molecular breeding: New tools and concepts. Euphytica 147, 81–103 (2006). https://doi.org/10.1007/s10681-006-4261-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-4261-4

Key Words

Navigation