Skip to main content

Advertisement

Log in

Using the IPAT identity and decoupling analysis to estimate water footprint variations for five major food crops in China from 1978 to 2010

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Evaluations of water footprint (WF) used to enhance performance of policies on water utilization will benefit from combining WF analysis with methods from sustainability analysis. For this purpose, this paper analyzes the WF of China’s five main food crops, which together account for roughly 33 % of the nation’s water consumption. We assess distributional equity at the provincial scale and use the IPAT identity and a decoupling analysis to assess the scale of both national and provincial WF consumption, the factors influencing the WF fluctuation, and the efficiency of water allocation. Results show that although it is difficult in the short term to end the unsustainable WFs of China’s five main food crops, more efficient allocation can be achieved through appropriate agricultural policy modification. In the long term, distributional equity at the provincial level must be the key factor in achieving sustainable agriculture in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This information is available at: www.fao.org/nr/water/infores_databases_cropwat.html, 2012.

  2. This information is available at: www.fao.org/nr/water/infores_databases_climwat.html, 2012.

  3. China Agricultural Products and Good Yearbook is an annual report announced on http://www.cnagri.com, 2012.

References

  • Allen, R. G., Pereica, L. S., Rae, D., & Smith, M. (1998). Crop evapotranspirationguidelines for computing crop water requirements, FAO Irrigation and Drainage Papers. 56.U.N. Food and Agriculture Organization, Rome.

  • Angel, M., Hoekstra, A. Y., & Garcia, E. (2015). Sustainability of the water footprint of the Spanish pork industry. Ecological Indicators, 57, 465–474.

    Article  Google Scholar 

  • Chang, Y. F., & Lin, S. J. (1998). Structural decomposition of industrial CO2 emission in Taiwan: An input-output approach. Energy Policy, 26(1), 5–12.

    Article  Google Scholar 

  • Chen, Z. M., & Chen, G. Q. (2013). Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecological Indicator, 28, 142–149.

    Article  Google Scholar 

  • Chertow, M. (2001). The IPAT equation and its variants: Changing views of technology and environmental impact. Journal of Industrial Ecology, 4(4), 13–29.

    Article  Google Scholar 

  • Chouchane, H., Hoekstra, A. Y., Maarten, S. K., & Mekonnen, M. M. (2015). The water footprint of Tunisia from an economic perspective. Ecological Indicators, 52, 311–319.

    Article  Google Scholar 

  • Daly, H. E. (1992). Allocation, distribution, and scale: Towards an economics that is efficient, just and sustainable. Ecological Economics, 6(3), 185–193.

    Article  Google Scholar 

  • Daly, H. E. (2003). Economics in a full world. Scientific American, 293(3), 100–107.

    Article  Google Scholar 

  • Daly, H. E., & Farley, J. (2016). Ecological economics: Principles and applications (2nd ed.). Island: Island Press.

    Google Scholar 

  • Dumont, A., Gloria, S., & Llamas, M. R. (2013). The water footprint of a river basin with a special focus on groundwater: The case of Guadalquivir basin (Spain). Water Resources and Industry, 1–2, 60–76.

    Article  Google Scholar 

  • Ehrlich, P., & Holden, J. (1972). One-dimensional economy. The Bulletin of the Atomic Scientist, 28(5), 16–27.

    Google Scholar 

  • Enevoldsen, M. K., Ryelund, A. V., & Andersen, M. S. (2007). Decoupling of industrial energy consumption and CO2 emissions in energy-intensive industries in Scandinavia. Energy Economics, 29(4), 665–692.

    Article  Google Scholar 

  • Ercin, A. E., & Hoekstra, A. Y. (2014). Water footprint scenarios for 2050: A global analysis. Environment International, 64, 71–82.

    Article  Google Scholar 

  • Fang, F., Heijungs, R., & Snoo, G. R. (2014). Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family. Ecological Indicators, 36, 508–518.

    Article  Google Scholar 

  • Feng, L., Chen, B., Hayat, T., Ahmad, B., & Alsaedi, A. (2015). The driving force of water footprint under the rapid urbanization process: A structural decomposition analysis for Zhangye city in China. Journal of Cleaner Production, 9, 1–7.

    CAS  Google Scholar 

  • Francke, I. C. M., & Castro, J. F. W. (2013). Carbon and water footprint analysis of a soap bar produced in Brazil by Natural Cosmetics. Water Resources and Industry, 1–2, 37–48.

    Article  Google Scholar 

  • Ge, L. Q., Xie, G. D., Zhang, C. X., Zhang, C. X., Li, S. M., Qi, Y., et al. (2011). An evaluation of China’s water footprint. Water Resource Management, 25, 2633–2647.

    Article  Google Scholar 

  • Gerbens-Leenes, P. W., Mekonnen, M. M., & Hoekstra, A. Y. (2013). The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resources and Industry, 1–2, 25–36.

    Article  Google Scholar 

  • Gerbens-Leenes, P. W., Xu, L., Vries, G. J., & Hoekstra, A. Y. (2014). The blue water footprint and land use of biofuels from algae. Water Resources Research, 50, 8549–8563.

    Article  CAS  Google Scholar 

  • Gu, Y. F., Jin, X., Wang, H. T., & Li, F. T. (2014). Industrial water footprint assessment: Methodologies in need of improvement. Environmental Science & Technology, 48(12), 6531–6532.

  • Hoekstra, A. Y. (2013). The water footprint of modern consumer society. London: Routledge.

    Google Scholar 

  • Hoekstra, A. Y. (2014a). Sustainable, efficiency and equitable water use: The three pillars under wise freshwater allocation. Wiley Peer Reviewer Study: Water, 1, 31–40.

    Google Scholar 

  • Hoekstra, A. Y. (2014b). Water conservation through trade: The case of Kenya. Water International, 39(4), 451–468.

    Article  Google Scholar 

  • Hoekstra, A. Y., & Chapagain, A. K. (2008). Globalization of water: Sharing the planet’s fresh water resources. Oxford: Blackwell Publishing.

    Google Scholar 

  • Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual: Setting the global standard. Water footprint network (1st ed.). New York: Earthscan.

    Google Scholar 

  • Hoekstra, A. Y., & Thomas, O. W. (2014). Humanity’s unsustainable environmental footprint. Science, 344, 1114–1115.

    Article  CAS  Google Scholar 

  • Jackson, N., Konar, M., & Hoekstra, A. Y. (2015). The water footprint of food aid. Sustainability, 7, 6435–6456.

    Article  Google Scholar 

  • Jenerette, G. D., Wu, W. L., Goldsmith, S., & Roach, J. (2006). Contrasting water footprints of cities in China and the United States. Ecological Economics, 57(3), 346–358.

    Article  Google Scholar 

  • Jia, S. F., Lv, A. F., Han, Y., et al. (2014). China water resource security report. Beijing: Science Publishing House.

    Google Scholar 

  • Kemp, R. (1998). Environmental regulation and innovation key issues and questions for research. In Institute for prospective technological studies (IPTS) (Ed.), The impact of EU-regulation on innovation of European Industry. Seveilla, 12–39.

  • Kwon, T. H. (2005). Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970–2000). Ecological Economics, 53(2), 261–275.

    Article  Google Scholar 

  • Lawn, P. A. (2001). Toward sustainable development—an ecological economics approach. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Lu, I. J., Lin, S. J., & Lewis, C. (2007). Position and decoupling effects of carbon dioxide emission from highway transformation in Taiwan, Germany, Japan and South Korea. Energy Policy, 35(6), 3226–3235.

    Article  Google Scholar 

  • Ma, J., Wang, D. X., Lai, H. L., & Wang, D. X. (2005). Water footprint—an application in water resources research. Resources Science, 27(5), 96–100.

    Google Scholar 

  • Malghan, D. (2006). On being the right size: A framework for the analytical study of scale, economy, and ecosystem. Ph.D. thesis, University of Maryland.

  • Malghan, D. (2010). On the relationship between scale, allocation, and distribution. Ecological Economics, 69(11), 2261–2270.

    Article  Google Scholar 

  • Mekonnen, M. M., Gerbens-Leenes, P. W., & Hoekstra, A. Y. (2015a). The consumptive water footprint of electricity and heat: A global assessment. Environment Science: Water Research & Technolgoy, 1(3), 255–396.

    Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2014). Water footprint benchmarks for crop production: A first global assessment. Ecological Indicators, 46, 214–223.

    Article  Google Scholar 

  • Mekonnen, M. M., Pahlow, M., Aldays, M. M., Zarate, E., & Hoekstra, A. Y. (2015b). Sustainability, efficiency and equitability of water consumption and pollution in Latin America and the Caribbean. Sustainability, 7, 2086–2112.

    Article  Google Scholar 

  • Miguel, A., Kallache, M., & Garcia, C. E. (2015). The water footprint of agriculture in Duero River Basin. Sustainability, 7, 6759–6780.

    Article  Google Scholar 

  • Ministry of Agriculture of the People’s Republic of China. (MAPRC) (1987–2011). China agricultural statistics report. Beijing: China Agriculture Press.

  • Nadeau, C. P., Fuller, A. K., & Rosenblatt, D. L. (2015). Climate-smart management of biodiversity. Ecosphere, 6(6), 1–17.

    Article  Google Scholar 

  • National Bureau of Statistics of China. (NBSC) (1981–2011). China statistical yearbook. Beijing: China Statistics Press.

  • National Bureau of Statistics of Rural Social Economic Investigation Department of China. (NBSRSEIDC). (2009). Reform and opening up 30 years of agricultural statistics compiled. Beijing: China Statistics Press.

    Google Scholar 

  • OECD. (2002). Indicators to measure decoupling of environmental pressure from economic growth. Summary report, OECD SG/SD.

  • OECD. (2003). Environmental indicators—development, measurement and use. Paris: OECD.

    Google Scholar 

  • Pahlow, M., Snowball, J., & Fraser, G. (2015). Water footprint assessment to inform water management and policy making in South Africa. Water, 41(3), 300–312.

    Google Scholar 

  • Pfister, S., & Ridoutt, B. G. (2014). Water footprint: Pitfalls on common ground. Environmental Science and Technology, 48(1), 4.

    Article  CAS  Google Scholar 

  • Ruini, L., Marino, M., Pignatelli, S., Laio, F., & Ridolfi, L. (2013). Water footprints of a large- sized food company: The case of Barilla pasta production. Water Resources and Industry, 1–2, 7–24.

    Article  Google Scholar 

  • Sheram, K., & Soubbotina, T. P. (2000). Beyond economic growth: Meeting the challenges of global development. World Bank Report: Washington, DC.

    Google Scholar 

  • Smith, P. L., Orville, H. D., Boe, B. A., & Stith, J. L. (1992). A status report on weather modification research in the Dakotas. Atmosphere Resource, 28, 271–298.

    Article  CAS  Google Scholar 

  • State Administration of Grain of China. (SAG). (2006–2011). China grain yearbook. Beijing: Economic Management Press.

  • Stewen, M. (1998). The interdependence of allocation, distribution, scale and stability—a comment on Herman E. Daly’s vision of an economics that is efficient, just and sustainable. Ecological Economics, 27(2), 119–130.

    Article  Google Scholar 

  • Sun, J. W. (1998). Changes in energy consumption and energy intensity: A complete decomposition model. Energy Economics, 20(1), 85–100.

    Article  Google Scholar 

  • Tapio, P. (2005). Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transport Policy, 12(2), 137–151.

    Article  Google Scholar 

  • Tian, Y. H., Zhu, D. J., Wang, H. M., & Zang, M. D. (2013). Water footprint calculation of China’s main food crops. China Population Resources and Environment, 23(6), 122–128.

    Google Scholar 

  • Vanham, D., & Bidoglio, G. (2013). A review on the indicator water footprint for the EU28. Ecological Indicators, 26, 61–75.

    Article  Google Scholar 

  • Vanham, D., Mekonnen, M. M., & Hoekstra, A. Y. (2013). The water footprint of the EU for different diets. Ecological Indicators, 32, 1–8.

    Article  Google Scholar 

  • Wichelns, D. (2010). Virtual water: A helpful perspective, but not a sufficient policy criterion. Water Resource Management, 24, 2203–2219.

    Article  Google Scholar 

  • York, R., Rosa, E. A., & Dietz, T. (2003). STIRPAT, IPAT and IMPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46(3), 351–365.

    Article  Google Scholar 

  • Zhang, Z. X. (2000). Decoupling China’s carbon emissions increase from economic growth: An economic analysis and policy implications. World Development, 28(4), 739–752.

    Article  Google Scholar 

  • Zhang, Y. J., & Da, Y. B. (2013). Decomposition the changes of energy-related carbon emissions in China: Evidence from the PDA approach. Natural Hazards, 69, 9–22.

    Google Scholar 

  • Zhang, Y. J., & Da, Y. B. (2015). The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renewable and Sustainable Energy Reviews, 41, 1255–1266.

    Article  Google Scholar 

  • Zhang, Y., & Yang, Q. S. (2014). Decoupling agricultural water consumption and environmental impact from crop production based on the water footprint method: A case study for the Heilongjiang land reclamation area, China. Ecological Indicators, 43, 29–35.

    Article  Google Scholar 

  • Zhao, C. F., Chen, B., Hayat, T., Alsaedi, A., & Ahmad, B. (2014a). Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector. Ecological Indicators, 47, 43–49.

    Article  Google Scholar 

  • Zhao, C. F., Chen, B., Hayat, T., Alsaedi, A., & Ahmad, B. (2014b). Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environmental Science and Technology, 48(21), 12723–12731.

    Article  CAS  Google Scholar 

  • Zhao, X., Chen, B., & Yang, Z. F. (2009). National water footprint in an input–output framework—a case study of China 2002. Ecological Modeling, 220(2), 245–253.

    Article  Google Scholar 

  • Zhou, M., Mekonnen, M. M., & Hoekstra, A. Y. (2014). Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin. Hydrology and Earth System Science Discussions, 11, 135–167.

    Article  Google Scholar 

Download references

Acknowledgments

The research presented here was supported in part by the Social Science Foundation of China (Grant No. 11AZD102), the General Program of the National Natural Science Foundation of China (Grant No. 71173157), the Youth Program of the National Natural Science Foundation of China (Grant No. 71303154), the Young University Teachers’ Grants Plan of Shanghai Municipal Education Committee (Grant No. ZZGCD15119) and the University-Level Research Initiation Foundation of Shanghai University of Engineering Science (Grant No. E3-0501-16-01034). We appreciate their support. This research has benefited from the helpful comments by the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhong Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Ruth, M. & Zhu, D. Using the IPAT identity and decoupling analysis to estimate water footprint variations for five major food crops in China from 1978 to 2010. Environ Dev Sustain 19, 2355–2375 (2017). https://doi.org/10.1007/s10668-016-9860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-016-9860-1

Keywords

Navigation