Skip to main content
Log in

Optimal design of additional sampling pattern for drinking-water quality control

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

A crucial step in complementary studies of the water quality determination is to design the additional sampling pattern or, in other words, to determine the number and location of the additional samples. Since location and number of samples highly affect decisions’ uncertainties, and because sampling process is quite costly and time-consuming, optimization of the sampling pattern will enhance the efficiency and productivity. Solution of such an optimization problem requires defining an objective function and constraints. There exist many previous studies regarding locating additional samples in other environmental problems wherein the objective function is defined as the minimization of the kriging variance (based on the problem nature), but the point is that kriging variance is not sensitive to local variability. Since manner and extent of small-scale variations are both important and necessary in water quality studies, it is required to resolve this shortcoming of the traditional objective function. Solution is to make use of the combined variance consisting of kriging and local variances. In this study, the applicability and efficiency of the minimization of combined variance as the objective function of the additional sampling was adopted and proved for a salt marsh (east of Iran) on the basis of a simulated annealing-based algorithm. It was shown, practically, that the locational distribution of additional sampling points is quite logical and more compatible with experts’ proposed methods using this objective function (compared to the traditional one).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arik, A., (1999a). An alternative approach to resource classification. In International symposium on computer applications in the mineral industries (APCOM’99) (pp. 45–53).

  • Arik, A., (1999b). Uncertainty, confidence intervals and resource categorization: A combined variance approach. In Proceedings of ISGSM, Perth, Australia.

  • Armstrong, M. (1983). Comparing drilling patterns for coal reserve assessment. Proceedings of the Australian Institute of Mining and Metallurgy, 288, 1–15.

    Google Scholar 

  • Armstrong, M. (1998). Basic linear geostatistics. Berlin: Springer.

    Book  Google Scholar 

  • Barnes, P. (1997). Row crop pollution control in Northeast Kansas. Kansas: Kansas State University.

    Google Scholar 

  • Beckers, C. V. (1974). Design of cost-effective water quality surveillance systems (p. 413). Office of research and development, U.S. environmental protection agency.

  • Brus, D. J., & Heuvelink, G. B. (2007). Optimization of sample patterns for universal kriging of environmental variables. Geoderma, 138, 86–95.

    Article  Google Scholar 

  • Carr, J., Bailey, R., & Deng, E. (1985). Use of indicator variograms for an enhanced spatial analysis. Journal of the International Association for Mathematical Geology, 17, 797–811.

    Article  Google Scholar 

  • Castrignanò, A., Goovaerts, P., Lulli, L., & Bragato, G. (2000). A geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma, 98, 95–113.

    Article  Google Scholar 

  • Chiueh, P.-T., Lo, S.-L., & Lee, C.-D. (1997). Prototype SDSS for using probability analysis in soil contamination. Journal of Environmental Engineering, 123, 514–519.

    Article  CAS  Google Scholar 

  • Christakos, G., & Killam, B. R. (1993). Sampling design for classifying contaminant level using annealing search algorithms. Water Resources Research, 29, 4063–4076.

    Article  CAS  Google Scholar 

  • Cox, L. A. (1999). Adaptive spatial sampling of contaminated soil. Risk Analysis, 19, 1059–1069.

    Article  Google Scholar 

  • Dagbert, M., (1990). Nested indicator approach for ore reserve estimation in highly variable mineralization. In 92nd general annual meeting of the Canadian Institute of Mining, Ottawa.

  • Davis, B. M. (1984). Indicator kriging as applied to an alluvial gold deposit, geostatistics for natural resources characterization (pp. 337–348). Berlin: Springer.

    Book  Google Scholar 

  • Dixon, W., Smyth, G. K., & Chiswell, B. (1999). Optimized selection of river sampling sites. Water Research, 33, 971–978.

    Article  CAS  Google Scholar 

  • Do, H. T., Lo, S.-L., & Thi, L. A. P. (2013). Calculating of river water quality sampling frequency by the analytic hierarchy process (AHP). Environmental Monitoring and Assessment, 185, 909–916.

    Article  Google Scholar 

  • Eliades, D. G., Polycarpou, M. M., & Charalambous, B. (2011). A security-oriented manual quality sampling methodology for water systems. Water Resources Management, 25, 1219–1228.

    Article  Google Scholar 

  • El-Shaarawi, A., Block, J., & Maul, A. (1985). The use of historical data for estimating the number of samples required for monitoring drinking water. Science of the Total Environment, 42, 289–303.

    Article  CAS  Google Scholar 

  • Fytas, K., Chaouai, N., & Lavigne, M., (1989). Indicator kriging performance in gold deposit evaluation. Paper.

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press.

    Google Scholar 

  • Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., & Nriagu, J. (2005). Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resources Research, 41. doi:10.1029/2004WR003705.

  • Grieve, C., Poss, J., & Amrhein, C. (2006). Response of Matthiola incana to irrigation with saline wastewaters. HortScience, 41, 119–123.

    CAS  Google Scholar 

  • Groot, S., & Schilperoort, T. (1984). Optimization of water quality monitoring networks. Water Science and Technology, 16, 275–287.

    CAS  Google Scholar 

  • Hasel, A. (1938). Sampling error in timber surveys. Journal of Agricultural Research, 57, 713–736.

    Google Scholar 

  • Hernandez, J., & Emery, X. (2009). A geostatistical approach to optimize sampling designs for local forest inventories. Canadian Journal of Forest Research, 39, 1465–1474.

    Article  Google Scholar 

  • Heuvelink, G. B., & Pebesma, E. J., (2002). Is the ordinary kriging variance a proper measure of interpolation error. In The fifth international symposium on spatial accuracy assessment in natural resources and environmental sciences (pp. 179–186). Melbourne: RMIT University.

  • Icaga, Y. (2005). Genetic algorithm usage in water quality monitoring networks optimization in Gediz (Turkey) River Basin. Environmental Monitoring and Assessment, 108, 261–277.

    Article  CAS  Google Scholar 

  • Isaaks, E. H. (1984). Risk qualified mappings for hazardous waste sites: A case study in distribution free geostatistics, Master‘s Thesis. CA: Stanford University.

  • Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. New York: Oxford University Press.

    Google Scholar 

  • Journel, A. G. (1983). Nonparametric estimation of spatial distributions. Journal of the International Association for Mathematical Geology, 15, 445–468.

    Article  Google Scholar 

  • Journel, A. (1986). Geostatistics: Models and tools for the earth sciences. Mathematical Geology, 18, 119–140.

    Article  Google Scholar 

  • Journel, A. G. (1988). Nonparametric geostatistics for risk and additional sampling assessment. In Principles of environmental sampling (P. 458). Washington, DC: American Chemical Society.

  • Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London: Academic Press.

    Google Scholar 

  • Juang, K.-W., & Lee, D.-Y. (1998). Simple indicator kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated site. Environmental Science and Technology, 32, 2487–2493.

    Article  CAS  Google Scholar 

  • Juang, K.-W., & Lee, D.-Y. (2000). Comparison of three nonparametric kriging methods for delineating heavy-metal contaminated soils. Journal of Environmental Quality, 29, 197–205.

    Article  CAS  Google Scholar 

  • Kao, J.-J., Li, P.-H., Lin, C.-L., & Hu, W.-H. (2008). Siting analyses for water quality sampling in a catchment. Environmental Monitoring and Assessment, 139, 205–215.

    Article  CAS  Google Scholar 

  • Karaivazoglou, N., Papakosta, D., & Divanidis, S. (2005). Effect of chloride in irrigation water and form of nitrogen fertilizer on Virginia (flue-cured) tobacco. Field Crops Research, 92, 61–74.

    Article  Google Scholar 

  • Kiani, A., & Abbasi, F. (2009). Assessment of the water–salinity crop production function of wheat using experimental data of the Golestan Province, Iran. Irrigation and Drainage, 58, 445–455.

    Article  Google Scholar 

  • Krige, D. (1951). A statistical approach to some mine valuation and allied problems on the Witwatersrand: By DG Krige. Johannesburg: University of the Witwatersrand.

    Google Scholar 

  • Kurdi, M., Hezarkhani, A., & Eslamkish, T. (2014). Assessment of chemical properties and hydro-geochemical coefficients at the Qareh Sou Basin, Golestan Province, Iran. Environmental Earth Sciences, 72, 3243–3249.

    Article  CAS  Google Scholar 

  • Lee, J.-J., Jang, C.-S., Wang, S.-W., & Liu, C.-W. (2007). Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model. Science of the Total Environment, 384, 151–162.

    Article  CAS  Google Scholar 

  • Lee, J.-J., Liu, C.-W., Jang, C.-S., & Liang, C.-P. (2008). Zonal management of multi-purpose use of water from arsenic-affected aquifers by using a multi-variable indicator kriging approach. Journal of Hydrology, 359, 260–273.

    Article  CAS  Google Scholar 

  • Lettenmaier, D. P., & Burges, S. J. (1977). Design of trend monitoring networks. Journal of the Environmental Engineering Division, 103, 785–802.

    Google Scholar 

  • Lettenmaler, D. P. (1978). Design considerations for ambient stream quality monitoring. London: Wiley Online Library.

    Google Scholar 

  • Mahalanobis, P. C. (1940). A sample survey of the acreage under jute in Bengal. Sankhyā: The Indian Journal of Statistics, 4, 511–530.

    Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic geology, 58, 1246–1266.

    Article  CAS  Google Scholar 

  • Matheron, G., (1971). The theory of regionalized variables and its applications. École national supérieure des mines.

  • McBratney, A., Webster, R., & Burgess, T. (1981). The design of optimal sampling schemes for local estimation and mapping of of regionalized variables—I: Theory and method. Computers & Geosciences, 7, 331–334.

    Article  Google Scholar 

  • Olea, R. (1984). Sampling design optimization for spatial functions. Journal of the International Association for Mathematical Geology, 16, 369–392.

    Article  Google Scholar 

  • Ouyang, H.-T., Yu, H., Lu, C.-H., & Luo, Y.-H. (2008). Design optimization of river sampling network using genetic algorithms. Journal of Water Resources Planning and Management, 134, 83–87.

    Article  Google Scholar 

  • Pardo-Igúzquiza, E., & Dowd, P. A. (2005). Multiple indicator cokriging with application to optimal sampling for environmental monitoring. Computers & Geosciences, 31, 1–13.

    Article  Google Scholar 

  • Park, S.-Y., Choi, J. H., Wang, S., & Park, S. S. (2006). Design of a water quality monitoring network in a large river system using the genetic algorithm. Ecological Modelling, 199, 289–297.

    Article  Google Scholar 

  • Saikia, K., & Sarkar, B. (2006). Exploration drilling optimisation using geostatistics: a case in Jharia Coalfield, India. Applied Earth Science: Transactions of the Institutions of Mining and Metallurgy: Section B, 115, 13–22.

    Google Scholar 

  • Saisana, M., Dubois, G., Chaloulakou, A., & Spyrellis, N. (2004). Classification criteria and probability risk maps: Limitations and perspectives. Environmental Science and Technology, 38, 1275–1281.

    Article  CAS  Google Scholar 

  • Salarian, M., Najafi, M., Hosseini, S. V., & Heydari, M. (2015). Classification of Zayandehrud river basin water quality regarding agriculture, drinking, and industrial usage. American Research Journal of Civil and Structural Engineering, 1, 1–9.

    Google Scholar 

  • Sanders, T. G. (1983). Design of networks for monitoring water quality. Littleton: Water Resources Publication.

    Google Scholar 

  • Sharp, W. (1971). A topologically optimum water-sampling plan for rivers and streams. Water Resources Research, 7, 1641–1646.

    Article  Google Scholar 

  • Silva, D., & Boisvert, J. (2014). Mineral resource classification: A comparison of new and existing techniques. Journal of the Southern African Institute of Mining and Metallurgy, 114, 265–273.

    Google Scholar 

  • Simbahan, G. C., & Dobermann, A. (2006). Sampling optimization based on secondary information and its utilization in soil carbon mapping. Geoderma, 133, 345–362.

    Article  CAS  Google Scholar 

  • Sinclair, A. J., & Blackwell, G. H. (2002). Applied mineral inventory estimation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Skalski, J. R., & McKenzie, D. H. (1982). A design for aquatic monitoring programs. Journal of Environmental Management, 14, 237–251.

    Google Scholar 

  • Smith, J. L., Halvorson, J. J., & Papendick, R. I. (1993). Using multiple-variable indicator kriging for evaluating soil quality. Soil Science Society of America Journal, 57, 743–749.

    Article  Google Scholar 

  • Smith, D., & McBride, G. (1990). New Zealand’s national water quality monitoring network-design and first year’s operation. JAWRA Journal of the American Water Resources Association, 26, 767–775.

    Article  CAS  Google Scholar 

  • Soltani, S., & Hezarkhani, A. (2009). Additional exploratory boreholes optimization based on three-dimensional model of ore deposit. Archives of Mining Sciences, 54, 495–506.

    Google Scholar 

  • Soltani-Mohammadi, S., & Hezarkhani, A. (2013). A simulated annealing-based algorithm to locate additional drillholes for maximizing the realistic value of information. Natural Resources Research, 22, 229–237.

    Article  Google Scholar 

  • Souza, L. E. D., Costa, J. F. C. L., & Koppe, J. C. (2010). Comparative analysis of the resource classification techniques: case study of the Conceição Mine, Brazil. Applied Earth Science, 119, 166–175.

    Article  Google Scholar 

  • Stein, A., Riley, J., & Halberg, N. (2001). Issues of scale for environmental indicators. Agriculture, Ecosystems & Environment, 87, 215–232.

    Article  Google Scholar 

  • Strobl, R. O., Robillard, P. D., Day, R. L., Shannon, R. D., & McDonnell, A. J. (2006). A water quality monitoring network design methodology for the selection of critical sampling points: Part II. Environmental Monitoring and Assessment, 122, 319–334.

    Article  CAS  Google Scholar 

  • Telci, I. T., Nam, K., Guan, J., & Aral, M. M. (2009). Optimal water quality monitoring network design for river systems. Journal of Environmental Management, 90, 2987–2998.

    Article  Google Scholar 

  • Van Groenigen, J. W. (2000). The influence of variogram parameters on optimal sampling schemes for mapping by kriging. Geoderma, 97, 223–236.

    Article  Google Scholar 

  • Van Groenigen, J. W., Siderius, W., & Stein, A. (1999). Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma, 87, 239–259.

    Article  Google Scholar 

  • van Groenigen, J. W., & Stein, A. (1998). Constrained optimization of spatial sampling using continuous simulated annealing. Journal of Environmental Quality, 27, 1078–1086.

    Article  Google Scholar 

  • Van Meirvenne, M., & Goovaerts, P. (2001). Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma, 102, 75–100.

    Article  Google Scholar 

  • Varekar, V., Karmakar, S., Jha, R., & Ghosh, N. (2015). Design of sampling locations for river water quality monitoring considering seasonal variation of point and diffuse pollution loads. Environmental Monitoring and Assessment, 187, 1–26.

    Article  CAS  Google Scholar 

  • Warry, N. D., & Hanau, M. (1993). The use of terrestrial ecoregions as a regional-scale screen for selecting representative reference sites for water quality monitoring. Environmental Management, 17, 267–276.

    Article  Google Scholar 

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester: Wiley.

    Google Scholar 

  • Whitfield, P. H. (1988). Goals and data collection designs for water quality monitoring. JAWRA Journal of the American Water Resources Association, 24, 775–780.

    Article  CAS  Google Scholar 

  • World Health Organization. (2004). Guidelines for drinking-water quality. Geneva: World Health Organization.

    Google Scholar 

  • Yamamoto, J. K. (1999). Quantification of uncertainty in ore-reserve estimation: Applications to Chapada copper deposit, State of Goiás, Brazil. Natural Resources Research, 8, 153–163.

    Article  Google Scholar 

  • Yamamoto, J. (2000). An alternative measure of the reliability of ordinary kriging estimates. Mathematical Geology, 32, 489–509.

    Article  Google Scholar 

  • Young, D. S. (1987). Indicator kriging for unit vectors: Rock joint orientations. Mathematical Geology, 19, 481–501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Soltani-Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safa, M., Soltani-Mohammadi, S. & Kurdi, M. Optimal design of additional sampling pattern for drinking-water quality control. Environ Dev Sustain 19, 1265–1278 (2017). https://doi.org/10.1007/s10668-016-9794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-016-9794-7

Keywords

Navigation