Skip to main content

Advertisement

Log in

Taxonomy of groundwater quality using multivariate and spatial analyses in the Tuticorin District, Tamil Nadu, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

A holistic appraisal of the quality of groundwater from the Tuticorin District has been conducted using multivariate statistical and spatial analyses. The objectives of the study were to delineate the spatial and temporal variabilities in groundwater quality and to understand its suitability for human uses. A total of 100 groundwater samples were collected and analyzed for major cations and anions during pre-monsoon and post-monsoon. Water quality index rating was calculated to quantify overall water quality for human consumption. The PRM samples exhibit poor quality in greater percentage when compared with POM due to the dilution after rainfall. Correlation, factor analysis, and plot of the factor scores reflect the seawater intrusion and weathering process. The mineral stability diagrams indicated that the groundwater is in equilibrium with kaolinite and Ca-montmorillonite, whereas Gibbs plot showed that the chemical composition of groundwater in both districts is controlled by the natural weathering processes irrespective of seasons. The major water type identified in this study is the Ca2+–Mg2+–HCO3 type, which degrades into predominantly Na+–Cl–SO4 2− more saline groundwater toward the coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • APHA. (1995). Standard methods for the examination of water and waste water (19th ed). Washington DC, USA: APHA.

  • Appelo, C. A., & Postma, D. (1999). Geochemistry, groundwater and pollution. Rotterdam: Balkema.

    Google Scholar 

  • Avvannavar, S. M., & Shrihari, S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring and Assessment, 143, 279–290.

    Article  CAS  Google Scholar 

  • Ayers, R. S., & Wascot, D. W. (1985). Water quality for irrigation, FAO irrigation and drainage paper #20, Rev 1. Rome: FAO.

    Google Scholar 

  • Balasubramanian, A. R., Thirugnana, S., Chellaswamy, R., & Radhakrishnan, V. (1993). Numerical modeling for prediction and control of saltwater encroachment in the coastal aquifers of Tamil Nadu. 21. Technical Report.

  • Barbecot, F., Marlin, C., Gibert, E., & Dever, L. (2000). Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Applied Geochemistry, 15, 791–805.

    Article  CAS  Google Scholar 

  • Briz-Kishore, B. H., & Murali, G. (1992). Factor analysis for revealing hydrochemical characteristics of a watershed. Environmental Geology and Water Science, 19, 3–9.

  • CGWB. (2009). South Eastern Coastal Region, District groundwater brochure, Tuticorin district, Tamil Nadu.

  • Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431–439.

  • Chapelle, F. H. (1983). Groundwater geochemistry and calcite cementation of the Aquia aquifer in south Meryland. Water Resource Research, 19, 545–558.

    Article  CAS  Google Scholar 

  • Chidambaram, S. (2000). Hydrogeochemical studies of groundwater in Periyar district, Tamil Nadu, India, unpublished Ph.D thesis, Department of Geology, Annamalai University.

  • Chidambaram, S., Prasad, M. B. K., Manivannan, R., Karmegam, U., Singaraja, C., Anandhan, P., et al. (2013). Environmental hydrogeochemistry and genesis of fluoride in groundwaters of Dindigul district. Tamil Nadu: Environmental Earth Sciences. doi:10.1007/s12665-012-1741-9.

    Google Scholar 

  • Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Anandhan, P., Srinivasamoorthy, K., & Vasudeven, S. (2007). Identification of hydrogeochemically active regimes in groundwaters of Erode District, Tamil Nadu. A statistical approach. Asian Journal of water, Environment and Pollution, 5, 93–102.

    Google Scholar 

  • Chidambaram, S., Senthil Kumar, G., Prasanna, M. V., John Peter, A., Ramanathan, A. L., & Srinivasamoorthy, K. (2009). A study on the hydrogeology and hydrogeochemistry of groundwater from different depths in a coastal aquifer: Annamalai Nagar, Tamil Nadu, India. Journal of Environmental Geology, 57(1), 59–73.

    Article  CAS  Google Scholar 

  • Chivas, A. R., Andrew, A. S., Lyons, W. B., Bird, M. I., & Donnelly, T. H. (1991). Isotopic constraints on the origin of salts in Australian playas. 1. Sulphur. Palaeogeography, Palaeoclimatology, Palaeoecology. Paleoenvironments of Salt Lakes, 84, 309–332.

    Article  Google Scholar 

  • Chowdhury, A. K., Gupta, S. (2011). Evaluation of water quality, hydro-geochemistry of confined and unconfined aquifers and irrigation water quality in Digha Coast of West Bengal, India (A case study). International Journal of Environmental Sciences, 2(2), ISSN 0976-4402.

  • Dalton, M. G., & Upchurch, S. B. (1978). Interpretation of hydrochemical facies by factor analysis. Groundwater, 16, 228.

    Article  CAS  Google Scholar 

  • Domenico, P. A., & Schwartz, W. (1990). Physical and chemical hydrogeology (p. 824). New York: John Wiley.

    Google Scholar 

  • Doneen, L. D. (1948). The quality of irrigation water. California Agriculture Department, 4, 6–14.

  • Doneen, L. D. (1954). Salinization of soil by salts in the irrigation water. Transcation, American Geophysical Union, 35, 943–950.

  • Elango, L., & Kannan, R. (2007). Rock–water interaction and its control on chemical composition of groundwater. Chap. 11. Developments in Environmental Science, 5, 229–243.

    Article  CAS  Google Scholar 

  • Emerson, W. W., & Bakker, A. C. (1973). The comparative effect of exchangeable Ca: Mg and Na on some soil physical properties of red brown earth soils. 2. The spontaneous dispersion of aggregates in water. Australian Journal of Soil Research, 11, 151–152.

    Article  CAS  Google Scholar 

  • Gangai, I. P. D., & Ramachandran, S. (2010). The role of spatial planning in coastal management: A case study of coast (India). Land Use Policy, 27, 518–534.

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world’s water chemistry. Science, 170, 1088–1090.

  • Gupta, S. K., & Gupta, I. C. (1987). Management of saline soils and waters (p. 339). New Delhi: Oxford and IBH Publishing and Co.

  • Jacks, G. (1973). Chemistry of ground water in a district in Southern India. Journal of Hydrology, 18, 185–200.

    Article  CAS  Google Scholar 

  • Jeen, S. K., Kim, J. M., Ko, K. S., Yum, B., & Chang, H. W. (2001). Hydrogeochemical characteristics of groundwater in a mid-western coastal aquifer system, Korea. Geoscience Journal, 5, 339–348.

    Article  Google Scholar 

  • Joshi, D. M., Kumar, A., & Agrawal, N. (2009). Assessment of the irrigation water quality of River Ganga in Haridwar District India. Journal of Chemistry, 2(2), 285–292.

    CAS  Google Scholar 

  • Kanwar, J. S., & Chaudhry, M. L. (1968). Effect of Mg on the uptake of nutrients from the soil. Journal of Research Punjab Agricultural University, 3, 309–319.

    Google Scholar 

  • Kelly, W. P. (1963). Use of saline irrigation water. Soil Science, 95(4), 355–391.

    Google Scholar 

  • Khaska, M., Sallea, C. L. G. L., Lancelot, J., Team, A., Mohamad, A., Verdoux, P., et al. (2013). Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Applied Geochemistry, 37, 212–227.

    Article  CAS  Google Scholar 

  • Khodapanah, L., Sulaiman, W. N. A., & Khodapanah, N. (2009). Groundwater quality assessment for different purposes in Eshtehard District, Tehran, Iran. European Journal of Scientific Research, 36(4), 543–553.

    Google Scholar 

  • Kim, J. H., Yum, B.-W., Kim, R.-H., Koh, D.-C., Cheong, T.-J., Lee, J., & Chang, H.-W. (2003). Application of cluster analysis for the hydrogeochemical factors of saline groundwater in Kimje,Korea. Geosciences Journal, 7(4), 313–322.

    Article  Google Scholar 

  • Krauskopf, K. B. (1979). Introduction to geochemistry. New York: McGraw-Hill.

    Google Scholar 

  • Lambrakis, N., & Kallergis, G. (2005). Contribution to the study of Greek thermal springs: Hydrogeological and hydrochemical characteristics and origin of thermal waters. Hydrogeology Journal, 13(3), 506–521.

    Article  CAS  Google Scholar 

  • Manikandan, S., Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Karmegam, U., Singaraja, C., et al. (2012). A study on the high fluoride concentration in the magnesium-rich waters of hard rock aquifer in Krishnagiri district, Tamil Nadu, India. Arabian Journal of Geosciences,. doi:10.1007/s12517-012-0752-x.

    Google Scholar 

  • Mathhess, G. (1982). The properties of ground water (1st ed.). New York: Wiley.

    Google Scholar 

  • Mishra, P. C., & Patel, R. K. (2001). Study of the pollution load in the drinking water of Rairangpur, a small tribal dominated town of North Orissa. Indian Journal of Environment and Ecoplanning, 5(2), 293–298.

    Google Scholar 

  • Mitra, B. K. & ASABE Member. (1998). Spatial and temporal variation of ground water quality in sand dune area of aomori prefecture in Japan.

  • Mondal, N. C., Singh, V. S., & Rangarajan, R. (2009). Aquifer characteristics and its modeling around an industrial complex, Tamil Nadu, India: A case study. Journal of Earth System Sciences, 188(3), 231–244.

    Article  Google Scholar 

  • Mondal, N. C., Singh, V. S., Saxena, V. K., & Prasad, R. K. (2008). Improvement of ground water quality due to fresh wateringress in Potharlanka Island, Krishna delta, India. Environmental Geology, 55(3), 595–603.

    Article  CAS  Google Scholar 

  • Nanyaro, J. T., Aswathanarayana, U., Mungore, J. S., & Lahermo, P. W. (1984). A geochemical model for the abnormal fluoride concentrations in waters in parts of northern Tanzania. Journal of African Earth Science, 2, 129–140.

    Article  CAS  Google Scholar 

  • Nurmi, P. A., Kukkonen, I., & Lahermo, P. W. (1988). Geochemistry and origin of saline groundwaters in the Fennoscandian Shield. Applied Geochemistry, 3(2), 185–203.

    Article  CAS  Google Scholar 

  • Oinam, J. D., Ramanathan, A. L., & Singh, G. (2012). Geochemical and statistical evaluation of groundwater in Imphal and Thoubal district of Manipur, India. Journal of Asian Earth Sciences, 48, 136–149.

    Article  Google Scholar 

  • Paliwal, K. V. (1972). Effect of gypsum application on the quality of irrigation waters. The Madras Agricultural Journal, 59, 646–647.

    Google Scholar 

  • Panagopoulos, G., Lamprakis, N., Tsolis-Katagas, P., & Papoulis, D. (2004). Cation exchange processes and human activities in unconfined aquifers. Environmental Geology, 46, 542–552.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1953). A graphic procedure I the geo-chemical interpretation of water analysis. USGS Groundwater Note no. 12.

  • Prasanna, M. V., Chidambaram, S., & Srinivasamoorthy, K. (2010). Statistical analysis of the hydrogeochemical evolution of groundwater in hard and sedimentary aquifers system of Gadilam river basin, South India. Journal of King Saud University Science, 22(3), 133–145.

    Article  Google Scholar 

  • Puri, A. N. (1949). Soils—Their physical chemistry (p. 550). New York: Rein-hold Publishing and Co.

    Google Scholar 

  • Raghunath, H. M. (1987). Geochemical survey and water quality (pp. 343–347). New Delhi: Groundwater Wiley eastern limited.

  • Rao, SN. (1997). Studies on water quality index in hard rock terrain of Guntur district, Andhra Pradesh, India (pp. 129–134). National Seminar on Hydrology of Precambrian Terrains and hard rock areas.

  • Rao, N. S., Rao, P. S., Reddy, G. V., Nagamani, M., Vidyasagar, G., & Satyanarayana, N. L. V. V. (2012). Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring Assessment, 184, 5189–5214. doi:10.1007/s10661-011-2333-y.

    Article  CAS  Google Scholar 

  • Rasouli, F. S., & Masoudi, S. F. (2012). Simulation of the BNCT of brain tumors using MCNP code: Beam designing and dose evaluation. Iranian Journal of Medical Physics, 9(3), 183–192.

    Google Scholar 

  • Richard, L. A. (1954). Diagnosis and improvement of saline and alkali soils. USDA Handbook, 60, 160.

    Google Scholar 

  • Richter, B. C., & Kreitler, C. W. (1993). Geochemical techniques for identifying sources of ground-water salinization. Boca Raton: CRC Press. 258.

    Google Scholar 

  • Ryzner, J. W. (1984). A New index for determination amount of calcium carbonate scale formed by water. Journal American Water Works Association, 36, 472–486.

    Google Scholar 

  • Saleh, A., Al-Ruwih, F., & Shehata, M. (1999). Hydrogeochemical processes operating within the main aquifers of Kuwait. Journal of Arid Environment, 42, 195–209.

    Article  Google Scholar 

  • Scholler, H. (1965). Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigations and development. UNESCO, 54–83.

  • Scholler, H. (1967). Methods and techniques of ground water investigation and development. Water Resources Series no: 33, UNESCO.

  • Senthilkumar, G., Ramanathan, A. L., Nainwal, H. C., & Chidambaram, S. (2008). Evaluation on the hydrogeochemistry of groundwater using factor analysis in the Cuddalore coastal region, Tamil Nadu,India. Indian Journal of Marine Science, 37, 2.

    Google Scholar 

  • Singaraja, C. (2014). A study on the hydrogeochemistry of groundwater in Tuticorin district of Tamil Nadu, India. Unpublished Ph.D thesis, Department of Earth Sciences, Annamalai University.

  • Singaraja, C. (2015). GIS-Based Suitability Measurement of Groundwater Resources for Irrigation in Thoothukudi District, Tamil Nadu, India. Water Quality, Exposure and Health. doi:10.1007/s12403-015-0159-5.

    Google Scholar 

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Paramaguru, P., Johnsonbabu, G., & Thilagavathi, R. (2012). A study on the behavior of the dissolved oxygen in the shallow coastal wells of Cuddalore District, Tamil Nadu, India. Water Quality, Exposure and Health, 4, 1–16. doi:10.1007/s12403-011-0058-3.

    Article  CAS  Google Scholar 

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasanna, M. V., Thivya, C., Thilagavathi, R., & Sarathidasan, J. (2013a). Hydrochemistry of groundwater in a coastal region and its repercussion on quality, a case study—Thoothukudi district, Tamil Nadu, India. Arabian Journal of Geoscience,. doi:10.1007/s12517-012-0794-0.

    Google Scholar 

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2013b). Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India. Journal of Environmental Earth Science,. doi:10.1007/s12665-013-2453-5.

    Google Scholar 

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasanna, M. V., Thivya, C., Thilagavathi, R., & Sarathidasan, J. (2014a). Geochemical evaluation of fluoride contamination of groundwater in the Thoothukudi District of Tamil Nadu. India: Applied Water Sciences. doi:10.1007/s13201-014-0157-y.

    Google Scholar 

  • Singaraja, C., Chidambaram, S., Anandhan, P., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2014b). A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India. Environment, Development and Sustainability,. doi:10.1007/s10668-014-9554-5.

    Google Scholar 

  • Singh, D. F. (1992). Studies on the water quality index of some major rivers of Pune, Maharashtra. Proceedings of the Academy of Environmental Biology, 1(1), 61–66.

    Google Scholar 

  • Singh, A., Mondal, K., Suresh Kumar, G. C., Singh, T. B., Tewary, B. K., & Sinha, A. (2008). Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environmental Geology, 54, 745–758.

    Article  CAS  Google Scholar 

  • Smith, S. J., Andres, R., Conception, E., & Lurz, J. (2004). Sulfur Dioxide Emissions. 1850–2000 (Joint Global Change Research Institute Report. PNNL-14537).

  • Soundranayagam, J. P., Sivasubramanian, P., Chandrasekar, N., & Rajamanickem, G. V. (2009). Remote sensing and GIS application in urban expansion and its impact on sea water intrusion in Thoothukudi, Tamil Nadu. Indian Journal of Landscape Systems and Ecological Studies, 32(2), 1–10.

    Google Scholar 

  • Srinivasamoorthy, K., Chidambaram, M., Prasanna, M. V., Vasanthavigar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain—A case study from Mettur taluk, Salem district, Tamil Nadu, India. Jornal of Earth System Science, 117(1), 49–58.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (p. 1022). New York: John Wiley and sons Inc.

    Google Scholar 

  • Szaboles, I., & Darab, C. (1964). The influence of irrigation water of high sodium carbonate content of soils. In Proceedings of 8th international congress of ISSS, Trans, II: pp. 803-812.

  • Teotia, S. P. S., Teotia, M., & Singh, R. K. (1981). Hydrogeochemical aspects of endemic skeletal fluorosis in India - an epidemiological study. Fluoride, 14, 69–74.

  • Thilagavathi, R., Chidambaram, S., Thivya, C., Prasanna, M. V., Singaraja, C., Tirumalesh, K., & Pethaperumal, S. (2014). Delineation of natural and anthropogenic process controlling hydrogeochemistry of layered aquifer sequence. Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences, 88(1), 95–108.

    Article  Google Scholar 

  • Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M. V., & Jainab, I. (2013a). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environment, Development and Sustainability,. doi:10.1007/s10668-013-9439-z.

    Google Scholar 

  • Thivya, C., Chidambaram, S., Thilagavathi, R., Prasanna, M. V., Singaraja, C., & Nepolian, M. (2013b). Identification of the geochemical processes in groundwater by factor analysis in hard rock aquifers of Madurai District. South India. Arabian Journal of Geosciences,. doi:10.1007/s12517-013-1065-4.

    Google Scholar 

  • Todd, D. K. (1959). Seawater intrusion in costal aquifers. Transactions American Geophysical Union, 34, 749–754.

    Article  Google Scholar 

  • Todd, D. K. (1980). Ground water hydrology. New York: Wiley. 535.

    Google Scholar 

  • Udayalaxmi, G., Himabindu, D., & Ramadass, G. (2010). Geochemical evaluation of groundwater quality in selected areas of Hyderabad, A.P., India. Indian Journal of Science and Technology, 3, 5.

    Google Scholar 

  • USSL. (1954). Diagnosis and improvement of Saline and alkali soils. USDA Handbook, 60, 147.

    Google Scholar 

  • Vandenbohede, A., Courtens, C., & William de Breuck, L. (2010). Fresh-salt water distribution in the central Belgian coastal plain: An update. Geologica Belgica, 11(3), 163–172.

  • Warner, N. R., Kresse, T. M., Hays, P. D., Down, A., Karr, J. D., Jacksona, R. B., & Vengosha, A. (2013). Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas. Applied Geochemistry, 35, 207–220.

    Article  CAS  Google Scholar 

  • WHO. (2004). Guidelines for drinking water quality recommendations (Vol. 1, p. 515). Geneva: WHO.

    Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation water. United States Geological Department Agriculture, 969, 19.

    Google Scholar 

  • Yidana, S. M., Banoeng-Yakubo, B., & Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58, 220–234.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Singaraja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singaraja, C., Chidambaram, S., Jacob, N. et al. Taxonomy of groundwater quality using multivariate and spatial analyses in the Tuticorin District, Tamil Nadu, India. Environ Dev Sustain 18, 393–429 (2016). https://doi.org/10.1007/s10668-015-9654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-015-9654-x

Keywords

Navigation