Skip to main content
Log in

A system view of solvent selection in the pharmaceutical industry: towards a sustainable choice

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This paper presents a review of approaches that may be useful for the selection of solvents in the early stages of process development for the synthesis of active pharmaceutical ingredients. Characteristics of the methodologies and their applicability in early stages are explored. Early stages of development are recognised as ideal for detecting benefits and issues regarding the use of solvents. The “system” concept is introduced for the evaluation and selection of solvents in pharmaceutical processes; this concept does not yet seem to be widely utilised within the fine chemicals and pharmaceutical industries. System analysis is considered an important tool for viewing solvent selection from a holistic perspective. Hence, approaches suitable for the early stages of development and considering a holistic perspective might deliver more sustainable processes. The evolution of the synthesis of Ibuprofen API is used to illustrate this concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

BRITEST:

Best route innovative technology evaluation and selection techniques

CAMD:

Computer-aided molecular design

EFRAT:

Environmental fate and risk assessment

eNRTL-SAC:

Ionic non-random two liquid segment activity coefficient thermodynamic model

FDA:

Food and drug administration

FPP:

Finished pharmaceutical product

GMP:

Good manufacturing practice

HAP:

Hazardous air pollutants

HF:

Anhydrous hydrogen fluoride

HSE:

Health safety and environment

LCA:

Lifecycle assessment

MACT:

Maximum available control technology

MEIM:

Methodology for environmental impact minimisation

MHRA:

Medicine and healthcare products regulation agency

NRTL:

Non-random two liquid thermodynamic model

NRTL-SAC:

Non-random two liquid segment activity coefficient thermodynamic model

RSMs:

Regulatory starting materials

UNIFAC:

Universal Functional Activity coefficient

USEPA:

United States environmental protection agency

VOCs:

Volatile organic compounds

VOE:

Volatile organic emissions

WAR:

Waste reduction algorithm

References

  • Alexander, B., Barton, G., Petrie, J., & Romagnoli, J. (2000). Process synthesis and optimisation tools for the environmental design: Methodology and structure. Computers & Chemical Engineering, 24(2–7), 1195–1200.

    Article  CAS  Google Scholar 

  • Anderson, N. G. (2000). Practical process research and development. Oxford, UK: Academic Press.

    Google Scholar 

  • Basu, P. K. (1998). Pharmaceutical process development is different! Chemical Process Engineering, 94(9), 75.

    Google Scholar 

  • Basu, P. K., Mack, R. A., & Vinson, J. M. (1999). Consider a new approach to pharmaceutical process development. Chemical Engineering Progress, 95(8), 82.

    CAS  Google Scholar 

  • Bierma, T. J., & Waterstraat, F. (2000). Chemical management: Reducing waste and cost through innovative supply strategies. New York, Chichester: Wiley.

    Google Scholar 

  • Bouncel, E., Stairs R., & Wilson, H. (2003). The role of the solvent in chemical reactions, Volume 6 Oxford chemistry master, Oxford University Press.

  • Cann, M. C., & Connelly, M. E. (2000). Real-world cases in green chemistry. Washington, DC: American Chemical Society. Environmental Protection Agency.

    Google Scholar 

  • Chen, C.-C., & Crafts, P. A. (2006). Correlation and prediction of drug molecule solubility in mixed solvent systems with the non-random two-liquid segment activity coefficient (NRTL-SAC). Industrial & Engineering Chemistry Research, 45(13), 4816–4824.

    Article  CAS  Google Scholar 

  • Chen, H., & Shonnard, D. R. (2004). Systematic framework for the environmentally conscious chemical process design: Early and detail design stages. Industrial & Engineering Chemistry Research, 43(2), 535–552.

    Article  CAS  Google Scholar 

  • Chen, C.-C., & Song, Y. (2004a). Solubility modeling with a nonrandom two-liquid segment activity coefficient model. Industrial & Engineering Chemistry Research, 43(26), 8354–8362.

    Article  Google Scholar 

  • Chen, C.-C., & Song, Y. (2004b). Generalized electrolyte-NRTL model for mixed-solvent systems. AIChE Journal, 50(8), 1928–1941.

    Article  CAS  Google Scholar 

  • Chen, H., Wen, Y., Waters, M. D., & Shonnard, D. R. (2002). Design guidance for chemical process using environmental and economic assessments. Industrial & Engineering Chemistry Research, 41(18), 4503–4513.

    Article  CAS  Google Scholar 

  • Constable, D. J. C., Jimenez-Gonzales, C., & Henderson, R. K. (2007). Perspective on solvent use in the pharmaceutical industry. Organic Process Research & Development, 11(1), 133–137.

    Article  CAS  Google Scholar 

  • Curzons, A. D., Constable, D., & Cunningham, V. L. (1999). Solvent selection guide: A guide to integration of environmental, health and safety criteria into the selection of solvents. Clean Products and Process, 1(2), 82–90.

    Google Scholar 

  • Curzons, A. D., Constable, D., Mortimer, D., & Cunningham, V. L. (2001). So you think your process is green, how do you know?—Using principles of sustainability to determine what is green—A corporate perspective. Green Chemistry, 3(1), 1–6.

    Article  CAS  Google Scholar 

  • DiMasi, J. A., Hansen, R. W., & Grabowski, H. G. (2003). The price of innovation: New estimates of drug development costs. Journal of Health Economics, 22(2), 151–185.

    Article  Google Scholar 

  • Eden, M. R., Jorgensen, S. B., Gani, R., & El-Halwagi, M. M. (2004). A novel framework for simultaneous separation process and product design. Chemical Engineering and Processing, 43(5), 595–608.

    Article  CAS  Google Scholar 

  • Elango, V., Murphy, M. A., Smith, B. L., Davenport, K. G., Mott, G. N., Zey, E. G., et al. (1991). Method for producing ibuprofen. US Patent 4,981,995.

  • Elgue, S., Prat, L., Cognet, P., Cabassud, M., Lann, J. M., & Cezerac, J. (2004). Influence of solvent choice on optimisation of reaction-separation operation: Application to a Beckmann rearrangement reaction. Separation and Purification Technology, 34(1–3), 273–281.

    Article  CAS  Google Scholar 

  • Frank, T. C., Downey, J. R., & Gupta, S. K. (1999). Quickly screen solvents for organic solids. Chemical Engineering Progress, 95(12), 41–61.

    CAS  Google Scholar 

  • Gani, R. (2004). Chemical product design: Challenges and opportunities. Computers & Chemical Engineering, 28(12), 2441–2457.

    Article  CAS  Google Scholar 

  • Gani, R., Jimenez-Gonzalez, C., ten Kate, A., Crafts, P. A., Powell, M. J., Powell, L., et al. (2006). A modern approach to solvent selection. Chemical Engineering, 113(3), 30–43.

    CAS  Google Scholar 

  • Gao, J., & Furlani, T. R. (1995). Simulating solvent effects in organic chemistry. Computational Science and Engineering, 2(3), 24–33.

    Article  CAS  Google Scholar 

  • Gracin, S., Brinck, T., & Rasmuson, A. C. (2002). Prediction of solubility of solid organic compounds in solvents by UNIFAC. Industrial & Engineering Chemistry Research, 41(20), 5114–5124.

    Article  CAS  Google Scholar 

  • Grünig, R., & Kühn, R. (2005). Successful decision-making: A systematic approach to complex problems. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Heinzle, E., Weirich, D., Brogli, F., Hoffmann, V., Koller, G., Verduyn, M., et al. (1998). Ecological and economic objective functions for screening in integrated development of fine chemical processes. 1. Flexible and expandable framework using indices. Industrial & Engineering Chemistry Research, 37(8), 3395–3407.

    Article  CAS  Google Scholar 

  • Hostrup, M., Harper, P. M., & Gani, R. (1999). Design of environmentally benign processes: Integration of solvent design and separation process synthesis. Computers & Chemical Engineering, 23(10), 1395–1414.

    Article  CAS  Google Scholar 

  • Humphrey, J. L., & Keller, G. E., I. I. (1997). Separation process technology. London: McGraw-Hill.

    Google Scholar 

  • Jaksland, C. A., Gani, R., & Lien, K. M. (1995). Separation process design and synthesis based on thermodynamic insights. Chemical Engineering Science, 50(3), 511–530.

    Article  CAS  Google Scholar 

  • Jimenez-Gonzales, C., Curzons, A. D., Constable, D., & Cunningham, V. L. (2005). Expanding GSK’s solvent selection guide-application of lifecycle assessment to enhance solvent selection. Clean Technology and Environmental Policy, 7(1), 42–50.

    Article  Google Scholar 

  • Jimenez-Gonzalez, C., Poechlauer, P., Broxterman, Q. B., Yang, B.-S., Ende, D., Baird, J., et al. (2011). Key green engineering research areas for sustainable manufacturing: A perspective from pharmaceutical and fine chemicals manufacturers. Organic Process Research & Development, 15(4), 900–911.

    Article  CAS  Google Scholar 

  • Kim, K.-J., & Diwekar, U. M. (2002). Integrated solvent selection and recycling for continuous processes. Industrial Engineering Chemistry Research, 41(18), 4479–4488.

    Article  CAS  Google Scholar 

  • Kolar, P., Shen, J.-W., Tsuboi, A., & Ishikawa, T. (2002). Solvent selection for pharmaceuticals. Fluid Phase Equilibria, 194–197, 771–782.

    Article  Google Scholar 

  • Krewer, U., & Liauw, M. A. (2002). Pollution prevention through solvent selection and waste minimization. Industrial & Engineering Chemistry Research, 41(18), 4534–4552.

    Article  CAS  Google Scholar 

  • Lee, S., & Robinson, G. (1995). Process development: Fine chemicals from grams kilograms, Oxford chemistry primers; 30 Oxford science publications, Oxford University Press.

  • Li, M., Harten, P. F., & Cabezas, H. (2002). Experiences in designing solvents for the environment. Industrial & Engineering Chemistry Research, 41(23), 5867–5877.

    Article  CAS  Google Scholar 

  • Liu, Y., & Watanasiri, S. (1999). Successfully simulate electrolyte systems. Chemical Engineering Progress, 95(10), 25–42.

    CAS  Google Scholar 

  • Lyndley, D. D., Curtis, T. A., Ryan, T. R., De la Garza, E. M., Hilton, C. B., & Kenesson, T. M. (1991). Process for the production of 4’-Isobutylacetophenone. US Patent 5,068,448.

  • Mirmehrabi, M., Rohani, S., & Perry, L. (2005). Thermodynamic modeling for activity coefficient and prediction of solubility: Part 2. Semipredictive or semiempirical models. Journal of Pharmaceutical Sciences, 95(4), 798–809.

    Article  Google Scholar 

  • Modi, A., Aumond, J. P., Mavrovouniotis, M., & Stephanopoulos, G. (1996). Rapid plantwide screening of solvents for batch processes. Computers & Chemical Engineering, 20(1), S375–S380.

    Article  CAS  Google Scholar 

  • Muller, F. L., & Latimer, J. M. (2009). Anticipation of scale up issues in pharmaceutical development. Computers & Chemical Engineering, 33(5), 1051–1055.

    Article  CAS  Google Scholar 

  • Nass, K. K. (1994). Rational solvent selection for cooling crystallizations. Industrial & Engineering Chemistry Research, 33(6), 1580–1584.

    Article  CAS  Google Scholar 

  • Palaniappan, C., Srinivasan, R., & Tan, R. (2004). Selection of inherently safer process routes: A case study. Chemical Engineering and Processing, 43, 647–653.

    Article  Google Scholar 

  • Peccei, A. (1977). The human quality. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Perez-Vega, S., Peter, S., Salmeron-Ochoa, I., Nieva-de la Hidalga, A., & Sharratt, P. N. (2011). Analytical hierarchy processes (AHP) for the selection of solvents in early stages of pharmaceutical process development. Journal of Process Safety and Environmental Protection, 89(4), 261–267.

    Article  CAS  Google Scholar 

  • Pistikopoulos, E. N., & Stefanis, S. K. (1998). Optimal solvent design for environmental impact minimization. Computers & Chemical Engineering, 22(6), 717–733.

    Article  CAS  Google Scholar 

  • Sakizlis, V., Perkins, J. D., & Pistikopoulos, E. N. (2004). Recent advances in optimization-based simultaneous process and control design. Computers & Chemical Engineering, 28(10), 2069–2086.

    Article  CAS  Google Scholar 

  • Sharratt, P. (1997). Batch process design. London, UK: Blackie Academic and Professional.

    Book  Google Scholar 

  • Sharratt, P., & Sparshott, M. (1996). Case studies in environmental technology. Institute of Chemical Engineers.

  • Sheldon, R. A. (2005). Green solvents for sustainable organic synthesis: State of the art. Royal Society of Chemistry, 7(5), 267–278.

    CAS  Google Scholar 

  • Shetgiri, N., Patil, S., & Kelaskar, R. (2005). API scale-up during research and development. Pharmaceutical Technology, electronic edition, 1(3).

  • Sinha, M., Achiene, L. E. K., & Ostrovsky, G. M. (1999). Environmentally benign solvent design by global optimization. Computers & Chemical Engineering, 23(10), 1381–1394.

    Article  CAS  Google Scholar 

  • Smallwood, I. (1993). Solvent recovery handbook. London, UK: McGraw-Hill.

    Google Scholar 

  • Stuart NJ and Sanders AS (1968) Phenyl propionic acids. US 3385886. Patent.

  • Thomas, B., & Karl Hans, S. (1994). Knowledge integrating system for the selection of solvents for extractive and azeotropic distillation. Computers & Chemical Engineering, 18, S25–S29.

    Article  Google Scholar 

  • Tucker, J. L. (2006). Green chemistry, a pharmaceutical perspective. Organic Process Research & Development, 10, 2.

    Article  Google Scholar 

  • USEPA. (1997). Profile of the pharmaceutical manufacturing industry. http://www.epa.gov/compliance/resources/publications/assistance/sectors/notebooks/pharma.pdf.

  • Wang, Y., & Achiene, L. E. K. (2002). A hybrid global optimization approach for solvent design. Chemical Engineering and Processing, 26, 1415–1425.

    CAS  Google Scholar 

  • Whiting, W. B. (1996). Effects of uncertainties in thermodynamic data and models on process calculations. Journal of Chemical Engineering Data, 41(5), 935–941.

    Article  CAS  Google Scholar 

  • Willis, C., & Willis, M. (1995). Organic synthesis, Volume 31, Oxford Chemistry Primers, Oxford science publications.

  • Wypych, G. (2006). Important determinants of solvent selection. Chemical Engineering, 113(6), 54–60.

    CAS  Google Scholar 

  • Zgurovsky, M. Z., & Pankratova, N. D. (2007). System analysis: Theory and applications. Berlin: Springer.

    Google Scholar 

  • Zhang, Y., Bakchi, B., & Sahledemessie, E. (2008). Lifecycle Assessment of an Ionic Liquid versus Molecular Solvents and Their Applications. Environmental Science Technology, 42(5), 1724–1730.

    Article  CAS  Google Scholar 

  • Zhao, R., & Cabezas, H. (1998). Molecular thermodynamics in the design of substitute solvents. Industrial & Engineering Chemistry Research, 37(8), 3268–3280.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the CONACYT for providing the funding for the development of this research project. The author also would like to thank the reviewers and editors of this journal for their feedback in the revision process. We also expressed our acknowledgement to the consortium BRITEST for sharing information regarding current solvent selection in the industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Perez-Vega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Vega, S., Ortega-Rivas, E., Salmeron-Ochoa, I. et al. A system view of solvent selection in the pharmaceutical industry: towards a sustainable choice. Environ Dev Sustain 15, 1–21 (2013). https://doi.org/10.1007/s10668-012-9365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-012-9365-5

Keywords

Navigation