Skip to main content

Advertisement

Log in

Marine Reserve Design with Ocean Currents and Multiple Objectives

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

There is a growing tendency to consider marine reserves as a management and conservation tool. We investigate a spatial bio-economic model to determine fishery profits under conservation efforts. Rather than imposing a marine reserve on our model, we ask, “When and where should a marine reserve be implemented ?” For one-dimensional habitat, we determine conditions under which marine reserves emerge as a part of the optimal policy. Depending upon the size of the habitat, the optimal strategy is either to avoid fishing or to fish at maximum rate. The effect of ocean currents is analyzed through numerical simulations. We find that in the presence of strong currents, a marine reserve may become ineffective. If the currents are at low rate, a marine reserve could emerge as a variable management tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ami, D., Cartigny, P., & Rapaport, A. (2005). Can marine protected areas enhance both economic and biological situations?. Comptes Rendus Biologies, 328, 357–366.

    Article  Google Scholar 

  2. Agardy, M.I. (1997). Marine protected areas and ocean conservation. San diego CA: Academic Press.

    Google Scholar 

  3. Bensenane, M., Moussaoui, A., & Auger, P. (2013). On the optimal size of marine reserves. Acta Biotheoretica, 61(1), 109–118.

    Article  CAS  Google Scholar 

  4. Moussaoui, A., Bensenane, M., Auger, P., & Bah, A. (2015). On the optimal size and number of reserves in a multi-site fishery model. Journal of Biological Systems, 23(1), 1–17.

    Article  Google Scholar 

  5. Bohnsack, J.A. (1996). Maintenance and recovery of reef fishery productivity. In Poulini, N.V.C., & Roberts, C.M. (Eds.) Reef Fisheries (pp. 283–313). London: Chapman and Hall.

  6. Botsford, L.W., & et al. (2009). Connectivity, sustainability and yield:Bringing the gap between conventional fisheries,management and marine protected areas. Reviews in Fisheries, 19, 69–95.

    Google Scholar 

  7. Brochier, T., Auger, P., Thiam, N., Sow, M., Diouf, S., Sloterdijk, H., & Brehmer, P. (2015). Ecological Modelling, 297, 98–106.

  8. Brown, C.J., & et al. (2015). Fisheries and biodiversities benefits of using static versus dynamic models for designing marine reserve networks. Ecosphere, 6(10), 182. 1–14.

  9. Brown, G.M., & Rougharden, J. (1997). A metapopulation model with private property and a common pool. Ecological Economics, 30, 293–299.

    Google Scholar 

  10. Costello, C., & et al. (2010). The value of spatial information in MPA network design. Proceedings of the National Academy of Sciences USA, 107, 18294–18299.

    Article  CAS  Google Scholar 

  11. Clark, C.W. (1976). The optimal management of renewable resources. New York: Wiley.

    Google Scholar 

  12. Claudet, J. (2011). Marine Protected Areas: a multidisciplinary approach. Cambridge UK: Cambridge University Press.

    Book  Google Scholar 

  13. Davies, C.R. (1995). Patterns movement of three species of coral reef fishon the Great Barrier Reef. Townsville, Australia: Ph.D.diss.James Cook University of North Queensland.

    Google Scholar 

  14. Ding, W., & Lenhart, S. (2009). Optimal harvesting of a spatially explicit fishery model. Natural Resource Modelling, 22(2), 173–211.

    Article  Google Scholar 

  15. Dugan, J.E., & Davies, G.E. (1993). Introduction to the international symposium on marine harvest refugia. Canadian Journal of Fisheries and Aquatic Sciences, 50, 1991–1992.

    Article  Google Scholar 

  16. Chakraborty, K., & Kar, T.k. (2012). Economic perspective of marine reserves in fisheries a bioeconomic model. Mathematical Biosciences, 240, 212–222.

    Article  Google Scholar 

  17. Dunlop, E.S., Baskett, M.L., Heino, M., & Dieckmann, U. (2009). Propensity of marine reserves to reduce the evolutionary effects of fishing in a migratory species. Evolutionary Applications, 2(3), 371–393.

    Article  Google Scholar 

  18. Gaines, S.D., White, C., Carr, M.H., & Palumbi, S.R. (2010). Designing marine reserves networks for both conservation and fisheries management. PNAS, 107(43), 1886–1893.

    Google Scholar 

  19. Eakin, C.M. (2001). A tale of two ENSO events:Carbonate budgets and the influence of two warming disturbances and intervening varaiability. UVA. island Panama. Bulletin of Marine Sciences, 69, 171–186.

    Google Scholar 

  20. Edgar, G., & et al. (2014). Global conservation outcomes depend on marine protected areas with five key features. Nature, 506, 216—220.

    Article  Google Scholar 

  21. Fogarty, M.J., Bohnsack, J.A., & Dayton, P.K. (2000). Marine reserves and resource management. In Sheppard, C. (Ed.) Seas at the Millenium: An environmental evaluations, (Vol. 3 pp. 375–392): Elsevier.

  22. Halpern, B.S. (2014). Conservation: making marine protected areas work. Nature, 506, 167–168.

    Article  CAS  Google Scholar 

  23. Halpern, B.S. (2003). The impact of marine reserves:Do reserves work and does reserve size matter. Ecological Applications, 13(1), supplS117-S137.

    Article  Google Scholar 

  24. Halpern, B.S., Lester, S.E., & Kellner, J.B. (2009). Spillover from marine reserves and the replenishment of fished stocks. Environmental Conservation, 36, 268–276.

    Article  Google Scholar 

  25. Halpern, & et al. (2008). A global map of human impact on a marine ecosystems. Science, 319, 948–952.

    Article  CAS  Google Scholar 

  26. Hasting, A., & Botsford, L.W. (2003). comparing designs of marine reserves for fisheries and biodiversity. Ecological Applications, 13, 65–70.

    Article  Google Scholar 

  27. Kellner, J.B., Tetrault, I., Gaines, S.D., & Nisbet, R.M. (2007). Fishing the line near marine reserves in single multispecies fisheries. Ecological Applications, 17, 1039–1054.

    Article  Google Scholar 

  28. Knowler, D., Barbier, E.B., & Strand, I (2001). An open access-Model of fisheries and Nutrient Enrichment in the Black Sea. Marine Resource Economics, 16(3), 195–217.

    Article  Google Scholar 

  29. De Leenheer, P. (2014). Optimal placement of marine protected areas: a trade-off between fisheries goals and conservation efforts. IEEE Transactions on Automatic Control, 6, 59.

    Google Scholar 

  30. Lester, S.E., & et al. (2009). Biological effects within no-take marine reserves: a global synthesis. Marine Ecology Progress Series, 384, 33–46.

    Article  Google Scholar 

  31. Gilbarg, D., & Trudinger, N. (1983). Elliptic Partial Differential Equations, 2nd edn. Berlin: Springer-Verlag.

    Google Scholar 

  32. Gell, F., & Robert, C. (2003). Benefits beyond boundaries: the fishery effect of marine reserves. Trends in Ecology and Evolution, 18, 448–455.

    Article  Google Scholar 

  33. Gruss, A. (2014). Modelling the impact of marine protected areas for mobile exploited fish populations and their fisheries: what we recently learnt and where we should be going. Aquatic Living Resources 12, 27(3-4), 107–133.

    Article  Google Scholar 

  34. Joshi, H., Herrera, G., Lenhart, S., & Neubert, M. (2008). Optimal dynamics harvest of a mobile renewable resource. Natural resource Modelling, 10(40), 322–343.

    Article  Google Scholar 

  35. Kelly, M.R., Xing, Y., & Lenhart, S. (2015). Optimal fish harvesting for a population modeled by a nonlinear parabolic partial differential equations, Natural resource Modelling. to appear.

  36. Kirk, D.F. (1970). Optimal Control Theory. Englewood Cliff NJ: Printice-Hall.

    Google Scholar 

  37. Lubchenco, J., Palumbi, S.R., Gaines, S.D., & Andelman, S. (2003). Plugging a hole in the ocean: the emerging science of marine reserves. Ecological Applications, 13, S3–S7.

    Article  Google Scholar 

  38. Mangel, M. (1998). No-take areas for sustainability of harvested species and conservation invariant for marine reserves. Ecology Letters, 1, 90–97.

    Article  Google Scholar 

  39. Neubert, M.G. (2003). Marine reserves and optimal harvesting. Ecology Letters, 6, 843–849.

    Article  Google Scholar 

  40. Okubo, A. (1980). Diffusion and ecological problems: Mathematical Models. New York: Springer.

    Google Scholar 

  41. O’Reilly, & et al. (2003). Climate change decreases aquatic ecosytem productivity of Lake Tanganyika, Africa. Nature, 424, 766–768.

    Article  Google Scholar 

  42. Roberts, C.M., & et al. (2003). Ecological criteria for evaluating candidate site for marine reserves. Ecological Applications, 13, 199–214.

    Article  Google Scholar 

  43. Pauly, D., Christensen, V., Guénette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R., & Zeller, D. (2002). Towards sustainability in world fisheries. Nature, 418, 689–95.

    Article  CAS  Google Scholar 

  44. Russ, G.R., Alcala, A.C., & Maypa, A.P. (2003). Spillover from marine reserves:The case of Nas.Vlamingii at Apo Island, The Philippine. Marine Ecology Progress Series, 264, 15–20.

    Article  Google Scholar 

  45. Sale, P.F. (2008). Coral Reef Fishes, Dynamics and Diversity in a Complex Ecosystem, 2nd Edn. San Diego Calif.: Academic Press.

    Google Scholar 

  46. Sale, P.F. (1977). Maintenance of high diversity in coral reef fish communities. American Naturalist, 111, 337–359.

    Article  Google Scholar 

  47. Sale, P.F. (1978). Coexistence of coral reef fishes, a lottery for living space. Environmental Biology of Fishes, 3(1), 85–102.

    Article  Google Scholar 

  48. Sanchiro, J.N. (2004). Designing a cost effective marine reserve network: a bioeconomic metapopulation analysis. Marine Resource Economics, 19, 41–65.

    Article  Google Scholar 

  49. Sanchirico, J.N., Malvadkar, U., Hasting, A., & Willen, J.E. (2006). When are no-take zones an economically optimal fishery management strategy? Ecological Applications, 16(5), 1643–1659.

    Article  Google Scholar 

  50. Sanchiro, J.N., & Willen, J.E. (1999). Bioeconomics of spatial exploitation in a patchy environment. Journal of Environmental Economics and Management, 37, 129–150.

    Article  Google Scholar 

  51. Sanchiro, J.N., & Willen, J.E. (2001). A bioeconomic model of marine reserve creation. Journal of Environmental Economics and Management, 42, 257–276.

    Article  Google Scholar 

  52. Smith, H.L. (1995). Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Mathematical Surveys and monographs. AMS. vol.41. providence.

  53. Smoller, J. (1994). Shock Waves and Reaction -Diffusion Equations, 2Nd edn. Berlin: Springer-Verlag.

    Book  Google Scholar 

  54. Sontag, E.D., & Theory, Mathematical Control. (1998). Deterministic finite Dimensional Systems. New York: Springer.

    Google Scholar 

  55. Stockhausen, W.T., & Lipscius, R.N. (2001). Single large or several small marine reserves for the Caribbean spiny lobster. Marine and Freshwater Research, 52, 1605–1614.

    Article  Google Scholar 

  56. Tuck, G.N., & Possingham, H.P. (2000). Marine protected areas for spatially structured exploited stocks. Marine Ecology Progress Series, 192, 89–101.

    Article  Google Scholar 

  57. Vellinga, M., & Wood, R.A. (2002). Global climate impacts of a collapse of the atlantic thermohaline circulation. Climate change, 54, 251–267.

    Article  Google Scholar 

  58. White, C., & et al. (2008). Marine reserves effects on fishery profit. Ecology Letters, 11(4), 370–379.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Bouguima.

Appendices

Appendix A: Proof of Theorem 2.1

To this end, we consider the control set

$$F=\left\{ E\in L_{\infty }\left( \left] 0,L\right[ \right) :0\leq E\leq E_{\max }\right\} $$

By standard elliptic theory, for every \(E\in L_{\infty }\), problem (M) has a unique positive solution u \(\in W^{2,p}\left ( \left ] 0,L\right [ \right ) \), ∀p>1. Moreover, there exists a positive constant M = M (L,r,k,μ)>0 such that \(\left \Vert u\right \Vert _{W^{2,p}}\leq M^{\ast };\) see for instance [31] and [53]. Since J(E)≤C, where C is a constant, we can choose a maximizing sequence \(\left \{ E_{n}\right \} \subset F\) such that

$$J\left( E_{n}\right) \rightarrow {\sup J(E).} $$

For every \(E_{n}\in L_{\infty }\), problem (M) has a unique positive solution u n \(\in W^{2,p}\left ( \left ] 0,L\right [ \right ) \), ∀p>1. Using u n as a test function in (M), we obtain

$$\left\Vert u_{n}\right\Vert_{{H_{0}^{1}}}\leq C, $$

for some positive constant C. Since \({H_{0}^{1}}\subset L^{2}\), with compact injection, then after passing to a subsequence, there exists u such that \(u_{n}\rightarrow \) u strongly in \(L^{2}\left ( \left ] 0,L \right [ \right ) \). Note that \(\left \Vert u_{n}\right \Vert _{W^{2,p}}\leq M^{\ast }\) and from the compact injection \(W^{2,p}\left ( \left ] 0,L\right [ \right ) \subset C^{0}\left ( \left [ 0,L\right ] \right ) \) for p large enough, it follows that \(\left \Vert u^{\ast }\right \Vert _{\infty }\)M . Similarly, since E n is uniformly bounded in L 2, then there exists a subsequence such that \(E_{n}\rightharpoonup \) E , weakly. We need to prove that

$$J\left( E^{\ast }\right) ={\sup J(E)}. $$

The quantity \(J\left ( E_{n}\right ) \) can be written

$$\begin{array}{@{}rcl@{}} J\left( E_{n}\right) &=&{\int\limits_{0}^{L}}pE_{n}(x)u_{n}(x)dx+Q{\int\limits_{0}^{L}}u_{n}(x)dx \\ &=&{\int\limits_{0}^{L}}pE_{n}(x)u_{n}(x)dx-{\int\limits_{0}^{L}}pE_{n}(x)u^{ \ast }(x)dx\\ &&+{\int\limits_{0}^{L}}pE_{n}(x)u^{\ast }(x)dx+Q{\int\limits_{0}^{L}}u_{n}(x)dx, \end{array} $$

hence

$$\begin{array}{@{}rcl@{}} &&\left\vert J\left( E_{n}\right) -J\left( E^{\ast }\right) \right\vert \leq \left( pE_{\max }+Q\right) {\int\limits_{0}^{L}}\\ &&\left\vert u_{n}-u^{\ast }\right\vert dx+M^{\ast }{\int\limits_{0}^{L}}\left\vert E_{n}-E^{\ast }\right\vert dx. \end{array} $$

We deduce that

$$J\left( E^{\ast }\right) =\sup J(E). $$

Appendix B: Proof of Lemma 2.1

We follow [29], by contradiction, assuming, that there exist an interval \([a ; b]\subset [ 0; L]\) such as

$$ \lambda_{2}\left( x\right) =-p\text{ \ \ \ on }[a;b]. $$
(7.2)

This implies that

$$\frac{d\lambda_{2}}{dx}=0. $$

From the second equation of \(\left ( S\right )\), we obtain

$$-\lambda_{1}\left( x\right) +kp=0. $$

which gives that

$$ \lambda_{1}\left( x\right) =-kp. $$
(7.3)

Then

$$ \frac{d\lambda_{1}\left( x\right) }{dx}=0. $$
(7.4)

Hence,

$$\left\{ \begin{array}{l} \frac{d\lambda_{1}\left( x\right) }{dx}=0\text{ \ \ \ on }[a;b], \\ \frac{d\lambda_{2}\left( x\right) }{dx}=0\text{ \ \ \ on }[a;b]. \end{array} \right. $$

It means that \(\left ( \lambda _{1},\lambda _{2}\right ) \) is at equilibrium \( \left ( -kp,-p\right ) \) on [a;b].

Consequently,

$$\lambda_{2}\left( x\right) =-p,\text{ \ \ for all }x\in [ 0;L]\text{,} $$

this constitutes a contradiction with the transversality condition.

We conclude that for each x∈[0;L], \(\lambda _{2}\left ( x\right ) \neq -p\).

Appendix C: Proof of Lemma 3.1

  1. (i)

    Transversality conditions implies that \(\frac {d\lambda _{2}^{{}}}{dx} \left ( 0\right ) =-\lambda _{1}\left ( 0\right ) \). This gives that

    $$\left\{ \begin{array}{c} s_{1}c_{1}+s_{2}c_{2}=-\lambda_{1}\left( 0\right) , \\ c_{1}+c_{2}=\frac{pE_{\max }+Q}{\mu +E_{\max }}. \end{array} \right. $$

It follows that

$$\left\{ \begin{array}{l} c_{1}=-\frac{\lambda_{1}\left( 0\right) +s_{2}\left( \frac{pE_{\max }+Q}{ \mu +E_{\max }}\right) }{s_{1}-s_{2}}, \\ c_{2}=\frac{\lambda_{1}\left( 0\right) +s_{1}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) }{s_{1}-s_{2}}. \end{array} \text{ }\right. $$

Therefore, the function

$$\begin{array}{@{}rcl@{}} \lambda_{2}\left( x\right) =&-&\frac{\lambda_{1}\left( 0\right) +s_{2}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) }{s_{1}-s_{2}}e^{s_{1}x}\\&+&\frac{ \lambda_{1}\left( 0\right) +s_{1}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }} \right) }{s_{1}-s_{2}}e^{s_{2}x}\\&-&\left( \frac{pE_{\max }+Q}{\mu +E_{\max }} \right) , \end{array} $$

satisfies

$$\lambda_{2}\left( 0\right) =0. $$

Now, it is clear that the transversality condition

$$\lambda_{2}\left( L\right) =0, $$

will be satisfied if and only if

$$\lambda_{1}(0)\,=\,{\lambda_{1}^{0}}:=\!\frac{\frac{pE_{\max }+Q}{\mu +E_{\max }}}{ e^{s_{2}L}-e^{s_{1}L}}\left[ s_{1}\left( 1\,-\,e^{s_{2}L}\right) \,+\,s_{2}\left( \!-1\,+\,e^{s_{1}L}\right)\! \right] . $$

Note that

$$\lambda_{1}(0)=-\frac{pE_{\max }+Q}{\mu +E_{\max }}\left[ \alpha s_{1}+\beta s_{2}\right] , $$

with

$$0<\alpha =\frac{(e^{s_{2}T}-1)}{e^{s_{2}T}-e^{s_{1}T}}<1\text{ and }0<\beta = \frac{(1-e^{s_{1}T})}{e^{s_{2}T}-e^{s_{1}T}}<1, $$

and

$$\alpha +\beta =1. $$

Hence,

$$-s_{2}\left( \frac{p+E_{\max }Q}{\mu +E_{\max }}\right) <\lambda_{1}\left( 0\right) <-s_{1}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) . $$

Let

$$\begin{array}{@{}rcl@{}} \lambda_{1}\left( x\right) &=&{\lambda_{1}^{0}}-\left( \mu +E_{\max }\right)\left( \frac{c_{1}}{s_{1}}e^{s_{1}x}+\frac{c_{2}}{s_{2}}e^{s_{2}x}-Qx\right)\\ &&+\left( \mu +E_{\max }\right) \left( \frac{c_{1}}{s_{1}}+\frac{c_{2}}{s_{2}} \right) , \end{array} $$

then \(\left ( \lambda _{1},\lambda _{2}\right ) \) is the desired solution.

  1. (ii)

    The stable manifold is a line through P λ with slope \(\frac {1}{ s_{2}}\) and unstable manifold is a line through P λ with slope \( \frac {1}{s_{1}}.\ \)The intercept of stable manifold with λ 1-axis is the point \(-s_{1}\left ( \frac {pE_{\max }+Q}{\mu +E_{\max }}\right )\) . The intercept of unstable manifold with λ 1-axis is the point \(-s_{2}\left ( \frac {pE_{\max }+Q}{\mu +E_{\max }}\right ) .\ \)The region that lies above the stable and unstable manifold is positively invariant. The lowest point of this region is the equilibrium point \( P_{\lambda }=\left ( \lambda _{1}^{\ast },\lambda _{2}^{\ast }\right ) \). It follows that when \(-s_{2}\left ( \frac {pE_{\max }+Q}{\mu +E_{\max }}\right ) \)λ 1(0)\(\leq -s_{1}\left ( \frac {pE_{\max }+Q}{\mu +E_{\max }}\right ),\) then \(\lambda _{2}(x)\geq \lambda _{2}^{\ast }\), for all \(x\in \left [ 0,L\right ] \). In order to establish the existence of a minimum, we write λ 2 as a function of λ 1, λ 2 = f(λ 1). We do not know the function f, but we can deduce its variation using the adjoint system. For the variation, we have

    $$\frac{d\lambda_{2}}{d\lambda_{1}}=\frac{k\lambda_{2}+\lambda_{1}}{ pE_{\max }+Q+\lambda_{2}\left( \mu +E_{\max }\right) }, $$

    it vanishes on the line

    $$\lambda_{2}=\frac{-1}{k}\lambda_{1} $$

    It is clear that\(\frac {d\lambda _{2}}{d\lambda _{1}}>0\) if \(\lambda _{2}> \frac {-1}{k}\lambda _{1}\) and \(\frac {d\lambda _{2}}{d\lambda _{1}}<0\) if \( \lambda _{2}<\frac {-1}{k}\lambda _{1}\). Moreover,

    $$\frac{d^{2}\lambda_{2}}{d{\lambda_{1}^{2}}}=\frac{\left\{ k(k\lambda_{2}+\lambda_{1})\left( pE_{\max }+Q+\lambda_{2}\left( \mu +E_{\max }\right) \right) +\left( pE_{\max }+Q+\lambda_{2}\left( \mu +E_{\max }\right) \right)^{2}-\left( \mu +E_{\max }\right) \left( k\lambda_{2}+\lambda_{1}\right)^{2}\right\} }{\left( pE_{\max }+Q+\lambda_{2}\left( \mu +E_{\max }\right) \right)^{2}}, $$

    when k λ 2 + λ 1=0, then

    $$\frac{d^{2}\lambda_{2}}{d{\lambda_{1}^{2}}}=1>0, $$

    and the function is convex in a neighborhood of the minimum.

  2. (iii)

    From the relation

    $$\begin{array}{@{}rcl@{}} \lambda_{2}\left( x\right) =&-&\frac{\lambda_{1}\left( 0\right) +s_{2}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) }{s_{1}-s_{2}}e^{s_{1}x}\\&+&\frac{ \lambda_{1}\left( 0\right) +s_{1}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }} \right) }{s_{1}-s_{2}}e^{s_{2}x}\\&-&\frac{pE_{\max }+Q}{\mu +E_{\max }}, \end{array} $$

    it follows that

    $$\begin{array}{@{}rcl@{}} \frac{\lambda_{2}\left( x\right) }{dx}=&-&\frac{\lambda_{1}\left( 0\right) +s_{2}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) }{s_{1}-s_{2}} s_{1}e^{s_{1}x}\\&+&\frac{\lambda_{1}\left( 0\right) +s_{1}\left( \frac{ pE_{\max }+Q}{\mu +E_{\max }}\right) }{s_{1}-s_{2}}s_{2}e^{s_{2}x}. \end{array} $$

The minimum is achieved when

$$\frac{\lambda_{2}\left( x\right) }{dx}=0. $$

This implies that

$$e^{\left( s_{2}-s_{1}\right) x}=\left( \frac{\lambda_{1}\left( 0\right) +s_{2}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) }{\lambda_{1}\left( 0\right) +s_{1}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) }\right) \frac{s_{1}}{s_{2}}, $$

and

$$x^{\ast }=\frac{1}{\left( s_{2}-s_{1}\right) }\ln \left( \frac{\lambda_{1}\left( 0\right) +s_{2}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) }{\lambda_{1}\left( 0\right) +s_{1}\left( \frac{pE_{\max }+Q}{\mu +E_{\max } }\right) }\times \frac{s_{1}}{s_{2}}\right) , $$

and the minimal value is

$$\lambda_{2}\left( x^{\ast }\right) \,=\,e^{s_{2}x^{\ast }}\!\!\left( \! \frac{\lambda_{1}\left( 0\right) \,+\,s_{1}\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) }{s_{1}}\right) \!-\left( \frac{pE_{\max }+Q}{\mu +E_{\max }}\right) . $$

Appendix D: Proof of Corollary 4.1

Since the equilibrium \(P_{\lambda }=\left ( \lambda _{1}^{\ast },\lambda _{2}^{\ast }\right ) \) is a saddle point, then \(\lambda _{2}^{\min }>\lambda _{2}^{\ast }\) . From the expression of \(\lambda _{2}^{\ast }\), it is clear that \(\lambda _{2}^{\ast }\) ≥−p. Hence \(\lambda _{2}^{\min }>-p\).

Appendix E: Proof of Corollary 4.2

Let \(\left ( \lambda _{1},\lambda _{2}\right )\) be a solution of(S) satisfying \(\lambda _{2}\left ( 0\right ) =\lambda _{2}\left ( L\right ) =0\) and \(\left ( \omega _{1},\omega _{2}\right ) \) be a solution of (S) with k=0, and satisfying \(\omega _{2}\left ( 0\right ) =\omega _{2}\left ( L\right ) =0\). We obtain that

$$\frac{d\lambda_{2}}{dx}\leq \frac{d\omega_{2}}{dx}. $$

Then by comparison principle, we deduce that

$$\lambda_{2}(x)\leq \omega_{2}(x)\text{ for all }x\in \left[ 0,L\right] . $$

From theorem 3 and inequality 34, in [29], it follows that there exists a real value L c r i such that if L>L c r i , the solution corresponding to k=0, hits the switching line ω 2=−p for some \( x\in \left [ 0,\frac {L}{2}\right ] \). This implies that \(\lambda _{2}^{\min }<-p\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguima, S.M., Hellal, M. Marine Reserve Design with Ocean Currents and Multiple Objectives. Environ Model Assess 22, 397–409 (2017). https://doi.org/10.1007/s10666-016-9543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9543-1

Keywords

Navigation