Skip to main content

Advertisement

Log in

Statistically Extracted Fundamental Watershed Variables for Estimating the Loads of Total Nitrogen in Small Streams

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P., & Zhao-Liang, Z. (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen cycling in the North Atlantic Ocean and its watersheds (pp. 75–139). Netherlands: Springer. doi:10.1007/978-94-009-1776-7_3.

    Chapter  Google Scholar 

  2. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737–750. doi:10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2.

    Google Scholar 

  3. Finlay, J. C., Small, G. E., & Sterner, R. W. (2013). Human influences on nitrogen removal in lakes. Science, 342(6155), 247–250. doi:10.1126/science.1242575.

    Article  CAS  Google Scholar 

  4. Passeport, E., Vidon, P., Forshay, K. J., Harris, L., Kaushal, S. S., Kellogg, D. Q., & Stander, E. K. (2013). Ecological engineering practices for the reduction of excess nitrogen in human-influenced landscapes: a guide for watershed managers. Environmental Management, 51(2), 392–413. doi:10.1007/s00267-012-9970-y.

    Article  Google Scholar 

  5. Dubrovsky, N. M., Burow, K. R., Clark, G. M., Gronberg, J. M., Hamilton, P. A., Hitt, K. J., Mueller, D. K., Munn, M. D., Nolan, B. T., Puckett, L. J., Rupert, M. G., Short, T. M., Spahr, N. E., Sprague, L. A., & Wilber, W. G. (2010). The quality of our Nation’s waters—nutrients in the Nation’s streams and groundwater, 1992–2004. U.S. Geological Survey Circular, 1350, 174.

    Google Scholar 

  6. Ribaudoa, M. O., Heimlich, R., & Peters, M. (2005). Nitrogen sources and Gulf hypoxia: potential for environmental credit trading. Ecological Economics, 52(2), 159–168. doi:10.1016/j.ecolecon.2004.07.021.

    Article  Google Scholar 

  7. Alexander, R. B., Smith, R. A., & Schwarz, G. E. (2000). Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature, 403(6771), 758–761. doi:10.1038/35001562.

    Article  CAS  Google Scholar 

  8. Johnes, P. J. (1996). Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modeling approach. Journal of Hydrology, 183(3), 323–349. doi:10.1016/0022-1694(95)02951-6.

    Article  CAS  Google Scholar 

  9. Billy, C., Birgand, F., Ansart, P., Peschard, J., Sebilo, M., & Tournebize, J. (2013). Factors controlling nitrate concentrations in surface waters of an artificially drained agricultural watershed. Landscape Ecology, 28(4), 665–684. doi:10.1007/s10980-013-9872-2.

    Article  Google Scholar 

  10. Peterson, E. W., & Benning, C. (2013). Factors influencing nitrate within a low-gradient agricultural stream. Environmental Earth Sciences, 68(5), 1233–1245. doi:10.1007/s12665-012-1821-x.

    Article  CAS  Google Scholar 

  11. Onderka, M., Wrede, S., Rodný, M., Pfister, L., Hoffmann, L., & Krein, A. (2012). Hydrogeologic and landscape controls of dissolved inorganic nitrogen (DIN) and dissolved silica (DSi) fluxes in heterogeneous catchments. Journal of Hydrology, 450, 36–47. doi:10.1016/j.jhydrol.2012.05.035.

    Article  Google Scholar 

  12. Hively, W. D., Hapeman, C. J., McConnell, L. L., Fisher, T. R., Rice, C. P., McCarty, G. W., Ali, M. S., Whitall, D. R., Downey, P. M., Niño de Guzmán, G. T., Bialek-Kalinski, K., Lang, M. W., Gustafson, A. B., Sutton, A. J., Sefton, K. A., & Fetcho, J. A. H. (2011). Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed. Science of the total environment, 409(19), 3866–3878. doi:10.1016/j.scitotenv.2011.05.024.

    Article  CAS  Google Scholar 

  13. Oehler, F., & Elliott, A. H. (2011). Predicting stream N and P concentrations from loads and catchment characteristics at regional scale: a concentration ratio method. Science of the Total Environment, 409(24), 5392–5402. doi:10.1016/j.scitotenv.2011.08.025.

    Article  CAS  Google Scholar 

  14. Preston, S. D., Alexander, R. B., Schwarz, G. E., & Crawford, C. G. (2011). Factors affecting stream nutrient loads: a synthesis of regional SPARROW model results for the continental United States. JAWRA Journal of the American Water Resources Association, 47(5), 891–915. doi:10.1111/j.1752-1688.2011.00577.x.

    Article  CAS  Google Scholar 

  15. Stålnacke, P., Pengerud, A., Bechmann, M., Garnier, J., Humborg, C., & Novotny, V. (2009). Nitrogen driving force and pressure relationships at contrasting scales: implications for catchment management. International Journal of River Basin Management, 7(3), 221–232. doi:10.1080/15715124.2009.9635385.

    Article  Google Scholar 

  16. Schilling, K. E., & Libra, R. D. (2000). The relationship of nitrate concentrations in streams to row crop land use in Iowa. Journal of Environmental Quality, 29(6), 1846–1851. doi:10.2134/jeq2000.00472425002900060016x.

    Article  CAS  Google Scholar 

  17. Mueller, D. K., Ruddy, B. C., & Battaglin, W. A. (1997). Logistic model of nitrate in streams of the upper-midwestern United States. Journal of Environmental Quality, 26(5), 1223–1230. doi:10.2134/jeq1997.00472425002600050005x.

    Article  CAS  Google Scholar 

  18. Reynolds, B., & Edwards, A. (1995). Factors influencing dissolved nitrogen concentrations and loadings in upland streams of the UK. Agricultural Water Management, 27(3), 181–202. doi:10.1016/0378-3774(95)01146-A.

    Article  Google Scholar 

  19. Horizon Systems Corporation (2013). National Hydrography Dataset Plus Version 2. Available at http://www.horizon-systems.com/nhdplus/NHDPlusV2_home.php.

  20. Brown, J. B., Sprague, L. A., & Dupree, J. A. (2011). Nutrient sources and transport in the Missouri River Basin, with emphasis on the effects of irrigation and reservoirs. JAWRA Journal of the American Water Resources Association, 47(5), 1034–1060. doi:10.1111/j.1752-1688.2011.00584.x.

    Article  CAS  Google Scholar 

  21. Moore, R. B., Johnston, C. M., Smith, R. A., & Milstead, B. (2011). Source and delivery of nutrients to receiving waters in the Northeastern and Mid-Atlantic regions of the United States. JAWRA Journal of the American Water Resources Association, 47(5), 965–990. doi:10.1111/j.1752-1688.2011.00582.x.

    Article  CAS  Google Scholar 

  22. Rebich, R. A., Houston, N. A., Mize, S. V., Pearson, D. K., Ging, P. B., & Hornig, C. E. (2011). Sources and delivery of nutrients to the northwestern Gulf of Mexico from streams in the south-central United States. JAWRA Journal of the American Water Resources Association, 47(5), 1061–1086. doi:10.1111/j.1752-1688.2011.00583.x.

    Article  CAS  Google Scholar 

  23. Robertson, D. M., & Saad, D. A. (2011). Nutrient inputs to the Laurentian Great Lakes by source and watershed estimated using SPARROW watershed models. JAWRA Journal of the American Water Resources Association, 47(5), 1011–1033. doi:10.1111/j.1752-1688.2011.00574.x.

    Article  CAS  Google Scholar 

  24. Saleh, D., & Domagalski, J. L. (2012). Using SPARROW to model total nitrogen sources, and transport in rivers and streams of California and adjacent states, USA. In AGU Fall Meeting Abstracts. (Vol. 1, p. L06).

  25. Wise, D. R., & Johnson, H. M. (2011). Surface-water nutrient conditions and sources in the United States Pacific Northwest. JAWRA Journal of the American Water Resources Association, 47(5), 1110–1135. doi:10.1111/j.1752-1688.2011.00580.x.

    Article  CAS  Google Scholar 

  26. Hoos, A. B., & McMahon, G. (2009). Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks. Hydrological Processes, 23(16), 2275–2294. doi:10.1002/hyp.7323.

    Article  CAS  Google Scholar 

  27. Preston, S. D., Alexander, R. B., Woodside, M. D., Hamilton, P. A. (2009). SPARROW MODELING—enhancing understanding of the nation’s water quality (pp. 6). U.S. Geological Survey Fact Sheet 2009–3019. Reston: Geological Survey.

  28. Schwarz, G. E., Hoos, A. B., Alexander, R. B., Smith, R. A. (2006). The SPARROW surface water-quality model: theory, application, and user documentation. U.S. Geological Survey Techniques and Methods Report, Book, 6, Chapter B3.

  29. Homer, C. H., Fry, J. A., & Barnes, C. A. (2012). The National Land Cover Database. U.S. Geological Survey Fact Sheet, 3020, 4.

    Google Scholar 

  30. Therneau, T. M., Atkinson, B., & Ripley, B. (2013). rpart: recursive partitioning. R package version, 4, 1–3.

    Google Scholar 

  31. Liaw, A., & Wiener, M. (2012). randomForest: Breiman and Cutler’s random forests for classification and regression. R package version, 4, 6–7.

    Google Scholar 

  32. Core Team, R. (2014). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.

    Google Scholar 

  33. Bulmer, M. G. (1979). Principles of statistics. New York: Dover Publications.

  34. Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9(1), 307. doi:10.1186/1471-2105-9-307.

    Article  Google Scholar 

  35. Rogerson, P. (2001). Statistical methods for geography. Los Angeles: Sage Publications.

  36. Escurra, J. J., Vazquez, V., Cestti, R., De Nys, E., & Srinivasan, R. (2014). Climate change impact on countrywide water balance in Bolivia. Regional Environmental Change, 14(2), 727–742. doi:10.1007/s10113-013-0534-3.

    Article  Google Scholar 

  37. Asner, G. P., Scurlock, J. M., & Hicke, J. A. (2003). Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12(3), 191–205. doi:10.1046/j.1466-822X.2003.00026.x.

    Article  Google Scholar 

  38. Reich, P. B., Peterson, D. W., Wedin, D. A., & Wrage, K. (2001). Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology, 82(6), 1703–1719. doi:10.1890/0012-9658(2001)082[1703:FAVEOP]2.0.CO;2.

    Google Scholar 

  39. Craig, L. S., Palmer, M. A., Richardson, D. C., Filoso, S., Bernhardt, E. S., Bledsoe, B. P., Doyle, M. W., Groffman, P. M., Hassett, B. A., Kaushal, S. S., Mayer, P. M., Smith, S. M., & Wilcock, P. R. (2008). Stream restoration strategies for reducing river nitrogen loads. Frontiers in Ecology and the Environment, 6(10), 529–538. doi:10.1890/070080.

    Article  Google Scholar 

  40. Lindsey, B. D., Breen, K. J., Bilger, M. D., & Brightbill, R. A. (1998). Water quality in the lower Susquehanna River basin, Pennsylvania and Maryland, 1992–95 (Vol. Circular 1168). Washington, DC: US Geological Survey.

    Google Scholar 

  41. Stets, E. G., Kelly, V. J., & Crawford, C. G. (2015). Regional and temporal differences in nitrate trends discerned from long-term water quality monitoring data. JAWRA Journal of the American Water Resources Association, 51(5), 1394–1407. doi:10.1111/1752-1688.12321.

    Article  Google Scholar 

  42. Kelly, V., Stets, E. G., & Crawford, C. (2015). Long-term changes in nitrate conditions over the 20th century in two Midwestern Corn Belt streams. Journal of Hydrology, 525, 559–571. doi:10.1016/j.jhydrol.2015.03.062.

    Article  CAS  Google Scholar 

  43. Smith, R. A., Alexander, R. B., & Schwarz, G. E. (2003). Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environmental Science & Technology, 37(14), 3039–3047. doi:10.1021/es020663b.

    Article  CAS  Google Scholar 

  44. United States Geological Survey (USGS). (2014). National Hydrography Dataset (NHD). Reston, VA: United States Geological Survey.

    Google Scholar 

  45. Wahl, K. L., & Wahl, T. L. (1995). Determining the flow of Comal Springs at New Braunfels, Texas, Texas Water ’95 (pp. 77–86). San Antonio, Texas: American Society of Civil Engineers.

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of the U.S. Geologic Survey National Water-Quality Assessment Program and the University of Minnesota Water Resource Science program. We would also like to thank the U.S. Geological Survey scientists that collected the data, calculated the loads, and developed the SPARROW models. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. The data and other information from this work (referred to in the text as “Online Resource”) can be found at http://dx.doi.org/10.5066/F7TX3CGB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Kronholm.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.40 mb)

ESM 2

(XLSX 71.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kronholm, S.C., Capel, P.D. & Terziotti, S. Statistically Extracted Fundamental Watershed Variables for Estimating the Loads of Total Nitrogen in Small Streams. Environ Model Assess 21, 681–690 (2016). https://doi.org/10.1007/s10666-016-9525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9525-3

Keywords

Navigation