Skip to main content
Log in

The Comparison of Lagrangian and Gaussian Models in Predicting of Air Pollution Emission Using Experimental Study, a Case Study: Ammonia Emission

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Ammonia, as a colorless gas with a sharp odor, is considered as one of the created odors in the composting and landfill of solid waste. We used experimental data to study the robustness of AERMOD and the forward Lagrangian stochastic (FLS) in predicting ammonia emission in short range. The study area was Kahrizak landfill and composting plants, Tehran, Iran. The boundary layer parameters for the FLS were calculated on the basis of mean values of temperature, wind speed, and direction. While, the boundary layers of AERMOD were computed on the basis of exact meteorological data. The results depicted that AERMOD prediction at distances less than 1000 m from the sources and the locations inside the sources were poor. However, the results of FLS indicated more agreement with the field measurement, which the coefficient of determination was 0.83. Both models predicted, in the distance of 2000 m from the source, the ammonia concentration would be insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Galloway, J., Jordan, C., Wisniewski, J., Erisman, J. W., & Cowling, E. (Eds.). (2002). Optimizing nitrogen management in food and energy production and environmental protection: Proceedings of the 2nd International Nitrogen Conference on Science and Policy, Potomac, MD, USA, 14–18 October 2001. CRC Press.

  2. Aneja, V. P., Roelle, P. A., Murray, G. C., Southerland, J., Erisman, J. W., Fowler, D., Asman, W., & Patni, N. (2001). Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment. Atmospheric Environment, 35(11), 1903–1911.

    Article  CAS  Google Scholar 

  3. Bouwman, A. F., & Van Der Hoek, K. W. (1997). Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries. Atmospheric Environment, 31(24), 4095–4102.

    Article  CAS  Google Scholar 

  4. Pagans, E., Barrena, R., Font, X., & Sánchez, A. (2006). Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere, 62(9), 1534–1542.

    Article  CAS  Google Scholar 

  5. Cadena, E., Colón, J., Sánchez, A., Font, X., & Artola, A. (2009). A methodology to determine gaseous emissions in a composting plant. Waste Management, 29(11), 2799–2807.

    Article  CAS  Google Scholar 

  6. Kurbanmuradov, O., Rannik, Ü., Sabelfeld, K., & Vesala, T. (2001). Evaluation of mean concentration and fluxes in turbulent flows by Lagrangian stochastic models. Mathematics and Computers in Simulation, 54(6), 459–476.

    Article  Google Scholar 

  7. Oettl, D., Kukkonen, J., Almbauer, R. A., Sturm, P. J., Pohjola, M., & Härkönen, J. (2001). Evaluation of a Gaussian and a Lagrangian model against a roadside data set, with emphasis on low wind speed conditions. Atmospheric Environment, 35(12), 2123–2132.

    Article  CAS  Google Scholar 

  8. Lutman, E. R., Jones, S. R., Hill, R. A., McDonald, P., & Lambers, B. (2004). Comparison between the predictions of a Gaussian plume model and a Lagrangian particle dispersion model for annual average calculations of long-range dispersion of radionuclides. Journal of Environmental Radioactivity, 75(3), 339–355.

    Article  CAS  Google Scholar 

  9. Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmospheric Environment, 40(30), 5902–5928.

    Article  CAS  Google Scholar 

  10. Faulkner, W. B., Powell, J. J., Lange, J. M., Shaw, B. W., Lacey, R. E., & Parnell, C. B. (2007). Comparison of dispersion models for ammonia emissions from a ground-level area source. Transactions of the ASABE, 50(6), 2189–2197.

    Article  CAS  Google Scholar 

  11. Karvounis, G., Deligiorgi, D., & Philippopoulos, K. (2007). On the sensitivity of AERMOD to surface parameters under various anemological conditions. In Proceedings of the 11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Cambridge, UK (pp. 43–47).

  12. Bajwa, K. S., Arya, S. P., & Aneja, V. P. (2008). Modeling studies of ammonia dispersion and dry deposition at some hog farms in North Carolina. Journal of the Air & Waste Management Association, 58(9), 1198–1207.

    Article  CAS  Google Scholar 

  13. Langner, C., & Klemm, O. (2011). A comparison of model performance between AERMOD and AUSTAL2000. Journal of the Air & Waste Management Association, 61(6), 640–646.

    Article  CAS  Google Scholar 

  14. Bonifacio, H. F., Maghirang, R. G., Razote, E. B., Trabue, S. L., & Prueger, J. H. (2013). Comparison of AERMOD and WindTrax dispersion models in determining PM10 emission rates from a beef cattle feedlot. Journal of the Air & Waste Management Association, 63(5), 545–556.

    Article  Google Scholar 

  15. Theobald, M. R., Sanz-Cobena, A., Vallejo, A., & Sutton, M. A. (2015). Suitability and uncertainty of two models for the simulation of ammonia dispersion from a pig farm located in an area with frequent calm conditions. Atmospheric Environment, 102, 167–175.

    Article  CAS  Google Scholar 

  16. Asadi, M., Asadollahdardi, G., & Mirmohammadi, M. (2014). Ammonia dispersion using experimental and modeling methods. Environmental Engineering Science, 31(12), 643–652.

    Article  CAS  Google Scholar 

  17. Asadollahfardi, G., Asadi, M., Youssefi, M., Elyasi, S., & Mirmohammadi, M. (2015). Experimental and mathematical study on ammonia emission from Kahrizak landfill and composting plants, Tehran, Iran. Journal of Material Cycles and Waste Management, 17(2), 350–358.

    Article  CAS  Google Scholar 

  18. Tehran municipality (2013). Climate of Tehran, Tehran, Iran. http://en.tehran.ir/Default.aspx?tabid=106, Accessed October 10, 2013

  19. Harati, A., Abdollahzade, R., & Jamshidi, R. (2011). Investigating the potential for RDF production from reclaimed landfill in Iran (case study Arad Kooh landfill in Tehran). Journal of Environment Science and Technology, 13(1), 75–82. In Persian.

    Google Scholar 

  20. TWMO (Tehran waste management organization) (2008). Arad-Kouh waste disposal and processing complex, http://pasmand.tehran.ir/Default.aspx?tabid=90. Accessed August 08, 2013.

  21. USEPA (US Environmental Protection Agency) (2000). Meteorological monitoring guidance for regulatory modeling applications. EPA-454/R-99-005., http://www.epa.gov/scram001/guidance/met/mmgrma.pdf. Accessed August 05, 2013.

  22. Oke, T. R. (1978). Boundary layer climates. New York: John Wiley and Sons, Inc.

    Book  Google Scholar 

  23. Holtslag, A. A. M., & Van Ulden, A. P. (1983). A simple scheme for daytime estimates of the surface fluxes from routine weather data. Journal of Climate and Applied Meteorology, 22(4), 517–529.

    Article  Google Scholar 

  24. Panofsky, H. A., & Dutton, J. A. (1984). Atmospheric turbulence: models and methods for engineering applications. New York: John Wiley and Sons Inc.

    Google Scholar 

  25. Wyngaard, J. C. (1988). Structure of the PBL. Lectures on Air Pollution Modeling, 9–61.

  26. Wark, K. (1995). Advanced thermodynamics for engineers. New York: McGraw-Hill.

    Google Scholar 

  27. Thunder Beach Scientific (2004). WindTrax software, Nanaimo, Canada. Accessed Available at: http://www.thunderbeachscientific.com.

  28. Paine, R. J. (1987). User’s guide to the CTDM meteorological preprocessor (METPRO) program. EPA-600/8-88-004, U.S. Environmental Protection Agency, Research Triangle Park, NC. (NTIS No. BP 88-162102).

  29. Flesch, T. K., Wilson, J. D., & Yee, E. (1995). Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions. Journal of Applied Meteorology, 34(6), 1320–1332.

    Article  Google Scholar 

  30. Ermak, D. L., & Nasstrom, J. S. (2000). A Lagrangian stochastic diffusion method for inhomogeneous turbulence. Atmospheric Environment, 34(7), 1059–1068.

    Article  CAS  Google Scholar 

  31. Pope, S. B. (2002). Stochastic Lagrangian models of velocity in homogeneous turbulent shear flow. Physics of Fluids (1994–present), 14(5), 1696–1702.

    Article  CAS  Google Scholar 

  32. Constantin, P., & Iyer, G. (2011). A stochastic-Lagrangian approach to the Navier–Stokes equations in domains with boundary. The Annals of Applied Probability, 21(4), 1466–1492.

    Article  Google Scholar 

  33. Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J., Wilson, R. B., et al. (2005). AERMOD: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization. Journal of Applied Meteorology, 44(5), 682–693.

    Article  Google Scholar 

  34. Perry, S. G., Cimorelli, A. J., Paine, R. J., Brode, R. W., Weil, J. C., Venkatram, A., et al. (2005). AERMOD: a dispersion model for industrial source applications. Part II: model performance against 17 field study databases. Journal of Applied Meteorology, 44(5), 694–708.

    Article  Google Scholar 

  35. Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J., Wilson, R. B., Lee, R., Peters, W., Brode, R., & Paumier, J. O. (2004). AERMOD: description of model formulation (EPA–454/R–03–004). US Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions Monitoring and Analysis Division. Tech. rep.

  36. Zhu, J. (1999). The influence of stability class on downwind odor concentration predicted by air dispersion models. Journal of Environmental Science and Health, Part A, 34(10), 1919–1931.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Mr. Ernest Rammel’s assistance in editing our manuscript. In addition, the authors would like to thank Mr. Arman DaneshiKohani for his help in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mirmohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, M., Asadollahfardi, G., Fakhraee, H. et al. The Comparison of Lagrangian and Gaussian Models in Predicting of Air Pollution Emission Using Experimental Study, a Case Study: Ammonia Emission. Environ Model Assess 22, 27–36 (2017). https://doi.org/10.1007/s10666-016-9512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9512-8

Keywords

Navigation