Skip to main content

Advertisement

Log in

Developing a Decision-Support System for Waste Management in Aluminum Production

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Industrial enterprises constitute a major portion of the world’s economy, as well as a large proportion of a country’s businesses and total employment. In Turkey, industrial enterprises are underdeveloped in terms of knowledge, skill, capital, and particularly accessing and benefiting from the advantages provided by modern information and communication technologies. Aluminum manufacturing has been reported to be the largest industry in Turkey with respect to production volumes and application fields. However, aluminum production is known to be an important contributor to environmental pollution, and the relative contribution of other related enterprises to the total industrial environmental impact is unknown. Environmental pollution sources can typically be classified into three categories: gaseous emissions, solid wastes, and wastewaters. The types of wastes produced by aluminum production vary based on the process line used, the variety of target products produced, and the production capacity of a given plant. As the capacities of facilities grow, the type and amount of waste become more variable. Therefore, the primary objective of this study is to determine the priority of each waste type in aluminum manufacturing industries. This study was conducted in the Industrial Zone of Kayseri in Turkey. Three different facilities that range in size from large to small based on their production volume, plant capacity, and variety of production are selected for this study. The priority of waste types was determined by combining the AHP and PROMETHEE II multicriteria decision methods. While wastewater was categorized as having the highest priority in large facilities, solid waste was determined to be the highest priority in medium and small facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Das, S., & Yin, W. (2007). Trends in the global aluminum fabrication industry. Journal of the Minerals, Metals and Materials Society, 59(2), 83–87.

    Article  Google Scholar 

  2. Tan, R. B., & Khoo, H. H. (2005). An LCA study of a primary aluminum supply chain. Journal of Cleaner Production, 13(6), 607–618.

    Article  Google Scholar 

  3. Shkolnikov, E. I., Zhuk, A. Z., & Vlaskin, M. S. (2011). Aluminum as energy carrier: feasibility analysis and current technologies overview. Renewable and Sustainable Energy Reviews, 15(9), 4611–4623.

    Article  CAS  Google Scholar 

  4. Habashi, F. (2008). Alloys—preparation, properties, applications. In F. Habashi (Ed.), Wiley VCH.

  5. Agrawal, A., & Sahu, K. K. (2009). An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. Journal of Hazardous Materials, 171(1), 61–75.

    Article  CAS  Google Scholar 

  6. European Commision (EC) (2001). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. December 2001. Directorate-General JRC Joint Research Centre Institute for Prospective Technological Studies (Seville), Technologies for Sustainable Development European IPPC Bureau.

  7. Sakon, K., Haraki, Y., Enokida, N., Yoshida, H., Yamagishi, Y., & Sako, T. (2004). Environmentally friendly anodized aluminum formation using high-pressure carbon dioxide and water. In Asian Pacific Confederation of Chemical Engineers Congress ID. 1P-03-007 (Vol. 2004, pp. 580–580).

  8. Chang, N. B., & Hernandez, E. A. (2008). Optimal expansion strategy for a sewer system under uncertainty. Environmental Modeling and Assessment, 13(1), 93–113.

    Article  Google Scholar 

  9. Erkut, E., & Moran, S. R. (1991). Locating obnoxious facilities in the public sector: an application of the analytic hierarchy process to municipal landfill siting decisions. Socio-Economic Planning Sciences, 25(2), 89–102.

    Article  Google Scholar 

  10. Siddiqui, M. Z., Everett, J. W., & Vieux, B. E. (1996). Landfill siting using geographic information systems: a demonstration. Journal of Environmental Engineering, 122(6), 515–523.

    Article  CAS  Google Scholar 

  11. Charnpratheep, K., Zhou, Q., & Garner, B. (1997). Preliminary landfill site screening using fuzzy geographical information systems. Waste Management and Research, 15(2), 197–215.

    Article  CAS  Google Scholar 

  12. Su, J. P., Chiueh, P. T., Hung, M. L., & Ma, H. W. (2007). Analyzing policy impact potential for municipal solid waste management decision-making: a case study of Taiwan. Resources, Conservation and Recycling, 51(2), 418–434.

    Article  Google Scholar 

  13. Rousis, K., Moustakas, K., Malamis, S., Papadopoulos, A., & Loizidou, M. (2008). Multi-criteria analysis for the determination of the best WEEE management scenario in Cyprus. Waste Management, 28(10), 1941–1954.

    Article  CAS  Google Scholar 

  14. Walther, G., Spengler, T., & Queiruga, D. (2008). Facility location planning for treatment of large household appliances in Spain. International Journal of Environmental Technology and Management, 8(4), 405–425.

    Article  Google Scholar 

  15. Achillas, C., Moussiopoulos, N., Karagiannidis, A., Banias, G., & Perkoulidis, G. (2013). The use of multi-criteria decision analysis to tackle waste management problems: a literature review. Waste Management & Research, 31(2), 115–129.

    Article  Google Scholar 

  16. Vego, G., Kucar-Dragicevic, S., & Koprivanac, N. (2008). Application of multi-criteria decision-making on strategic municipal solid waste management in Dalmatia, Croatia. Waste Management, 28(11), 2192–2201.

    Article  Google Scholar 

  17. Wang, G., Qin, L., Li, G., & Chen, L. (2009). Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. Journal of Environmental Management, 90(8), 2414–2421.

    Article  Google Scholar 

  18. De Feo, G., & De Gisi, S. (2010). Using an innovative criteria weighting tool for stakeholders involvement to rank MSW facility sites with the AHP. Waste Management, 30(11), 2370–2382.

    Article  Google Scholar 

  19. Nas, B., Cay, T., Iscan, F., & Berktay, A. (2010). Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environmental Monitoring and Assessment, 160(1–4), 491–500.

    Article  Google Scholar 

  20. Tavares, G., Zsigraiova, Z., & Semiao, V. (2011). Multi-criteria GIS-based siting of an incineration plant for municipal solid waste. Waste Management, 31(9), 1960–1972.

    Article  Google Scholar 

  21. Liu, H. C., You, J. X., Lu, C., & Shan, M. M. (2014). Application of interval 2-tuple linguistic MULTIMOORA method for health-care waste treatment technology evaluation and selection. Waste Management, 34(11), 2355–2364.

    Article  Google Scholar 

  22. Hokkanen, J., & Salminen, P. (1997). Choosing a solid waste management system using multi criteria decision analysis. European Journal of Operational Research, 98(1), 19–36.

    Article  Google Scholar 

  23. Refsgaard, K. (2006). Process-guided multi criteria analysis in wastewater planning. Environment and Planning C: Government and Policy, 24(2), 191–213.

    Article  Google Scholar 

  24. Aragones-Beltran, P., Mendoza-Roca, J. A., Bes-Pia, A., Garcia-Melon, M., & Parra-Ruiz, E. (2009). Application of multi criteria decision analysis to jar-test results for chemicals selection in the physical–chemical treatment of textile wastewater. Journal of Hazardous Materials, 164(1), 288–295.

    Article  CAS  Google Scholar 

  25. Al-Rashdan, D., Al-Kloub, B., Dean, A., & Al-Shemmeri, T. (1999). Environmental impact assessment and ranking the environmental projects in Jordan. European Journal of Operational Research, 118(1), 30–45.

    Article  Google Scholar 

  26. Salminen, P., Hokkanen, J., & Lahdelma, R. (1998). Comparing multi criteria methods in the context of environmental problems. European Journal of Operational Research, 104(3), 485–496.

    Article  Google Scholar 

  27. Lahdelma, R., Salminen, P., & Hokkanen, J. (2000). Using multi criteria methods in environmental planning and management. Environmental Management, 26(6), 595–605.

    Article  CAS  Google Scholar 

  28. Georgopoulou, E., Sarafidis, Y., & Diakoulaki, D. (1998). Design and implementation of a group DSS for sustaining renewable energies exploitation. European Journal of Operational Research, 109(2), 483–500.

    Article  Google Scholar 

  29. Haralambopoulos, D. A., & Polatidis, H. (2003). Renewable energy projects: structuring a multi-criteria group decision-making framework. Renewable Energy, 28(6), 961–973.

    Article  Google Scholar 

  30. Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning a review. Renewable and Sustainable Energy Reviews, 8(4), 365–381.

    Article  Google Scholar 

  31. Bellehumeur, C., Vasseur, L., Ansseau, C., & Marcos, B. (1997). Implementation of a multi criteria sewage sludge management model in the southern Quebec municipality of Lac-Megantic, Canada. Journal of Environmental Management, 50(1), 51–66.

    Article  Google Scholar 

  32. Khalil, W. A. S., Goonetilleke, A., Kokot, S., & Carroll, S. (2004). Use of chemometrics methods and multi criteria decision-making for site selection for sustainable on-site sewage effluent disposal. Analytica Chimica Acta, 506(1), 41–56.

    Article  CAS  Google Scholar 

  33. Bowen, W. M. (1995). A Thurstonian comparison of the analytic hierarchy process and probabilistic multidimensional scaling through application to the nuclear waste site selection decision. Socio-Economic Planning Sciences, 29(2), 151–163.

    Article  Google Scholar 

  34. Merkhofer, M. W., & Keeney, R. L. (1987). A multi attribute utility analysis of alternative sites for the disposal of nuclear waste. Risk Analysis, 7(2), 173–194.

    Article  CAS  Google Scholar 

  35. Petraa, J. C. (1997). Ranking the sites for low‐and intermediate‐level radioactive waste disposal facilities in Croatia. International Transactions in Operational Research, 4(4), 237–249.

    Article  Google Scholar 

  36. Taji, K., Levy, J. K., Hartmann, J., Bell, M. L., Anderson, R., Hobbs, B., & Feglar, T. (2005). Identifying potential repositories for radioactive waste: multiple criteria decision analysis and critical infrastructure systems. International Journal of Critical Infrastructures, 1(4), 404–422.

    Article  Google Scholar 

  37. Brent, A. C., Rogers, D. E., Ramabitsa-Siimane, T. S., & Rohwer, M. B. (2007). Application of the analytical hierarchy process to establish health care waste management systems that minimise infection risks in developing countries. European Journal of Operational Research, 181(1), 403–424.

    Article  Google Scholar 

  38. Karamouz, M., Zahraie, B., Kerachian, R., Jaafarzadeh, N., & Mahjouri, N. (2007). Developing a master plan for hospital solid waste management: a case study. Waste Management, 27(5), 626–638.

    Article  Google Scholar 

  39. Karagiannidis, A., Papageorgiou, A., Perkoulidis, G., Sanida, G., & Samaras, P. (2010). A multi-criteria assessment of scenarios on thermal processing of infectious hospital wastes: a case study for Central Macedonia. Waste Management, 30(2), 251–262.

    Article  CAS  Google Scholar 

  40. Kami, E., & Werczberger, E. (1995). The compromise criterion in MCDM: interpretation and sensitivity to the p parameter. Environment and Planning B: Planning and Design, 22(4), 407–418.

    Article  Google Scholar 

  41. Opricovic, S. (2007). A fuzzy compromise solution for multi criteria problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(3), 363–380.

    Article  Google Scholar 

  42. Achillas, C., Vlachokostas, C., Moussiopoulos, Ν., & Banias, G. (2010). Decision support system for the optimal location of electrical and electronic waste treatment plants: a case study in Greece. Waste Management, 30(5), 870–879.

    Article  Google Scholar 

  43. Onut, S., & Soner, S. (2008). Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Waste Management, 28(9), 1552–1559.

    Article  Google Scholar 

  44. Saaty, T. L. (1980). The analytic (hierarchy) process: planning, priority setting, resource allocation. New York: McGraw-Hill.

    Google Scholar 

  45. Bagla, V., & Gupta, A. (2011). Analytical hierarchy process based assignment model for allotting parking slots to different localities. Journal of Multi-Criteria Decision Analysis, 18(3–4), 173–185.

    Article  Google Scholar 

  46. Huo, L. A., Lan, J., & Wang, Z. (2011). New parametric prioritization methods for an analytical hierarchy process based on a pairwise comparison matrix. Mathematical and Computer Modelling, 54(11), 2736–2749.

    Article  Google Scholar 

  47. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.

    Article  Google Scholar 

  48. Saaty, T. L. (1990). Multi-criteria decision making: the analytic hierarchy process, planning, priority setting, resource allocation. Pittsburgh: RWS Publications.

    Google Scholar 

  49. Brans, J. P., & Vincke, P. (1985). Note—A preference ranking organisation method: (the PROMETHEE method for multiple criteria decision-making). Management Science, 31(6), 647–656.

    Article  Google Scholar 

  50. Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: the PROMETHEE method. European Journal of Operational Research, 24(2), 228–238.

    Article  Google Scholar 

  51. Parreiras, R. O., & Vasconcelos, J. A. (2007). A multiplicative version of PROMETHEE II applied to multiobjective optimization problems. European Journal of Operational Research, 183(2), 729–740.

    Article  Google Scholar 

  52. Brans, J. P., & Mareschal, B. (2005). PROMETHEE methods. In S. Greco (Ed.), Multiple criteria decision analysis: state of the art surveys (pp. 163–186). New York: Springer.

    Chapter  Google Scholar 

  53. Dagdeviren, M. (2008). Decision making in equipment selection: an integrated approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing, 19(4), 397–406.

    Article  Google Scholar 

  54. American Public Health Association/American Water Works Association/Water Environment Federation (APHA/AWWA/WEF) (1998). Standard methods for the examination of water and wastewater. 20th Ed., Washington.

Download references

Acknowledgments

The authors would like to express their appreciation to the Scientific and Technological Research Council of Turkey (TUBITAK) (Project No. 111R003) and the Erciyes University Scientific Research Foundation (Project No. FDA-2014-5531) for their financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Kızılkaya Aydogan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozmen, M., Aydogan, E.K., Ates, N. et al. Developing a Decision-Support System for Waste Management in Aluminum Production. Environ Model Assess 21, 803–817 (2016). https://doi.org/10.1007/s10666-016-9510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9510-x

Keywords

Navigation