Skip to main content

Advertisement

Log in

Bayesian Population Dynamics of Spreading Species

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The invasion by spreading species is one of the most serious threats to biodiversity and ecosystem functioning. Despite a number of empirical and theoretical studies, there is still no general model about why or when settlement becomes an invasion. The purpose of this work is to test a model of Bayesian population dynamics relying on best-response strategies that could help in resource management and bioeconomic modeling. Given the species survival probability, our static game unveils a breaking-level probability in mixed strategies, where the best response for exotic species is to invade and the best response for native species is to resist. In a dynamic setting, we introduce a stochastic version of the balance equation based on conditional probabilities. We find that when the species survival probability and the availability of resources in the ecosystem are respectively high and low, the population rebalancing dynamics operates at a high pace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The resource availability is of such general importance that after accounting for it, there should be no meaningful relationship between native diversity and invisibility [8]. Likewise, Johnstone [15] emphasizes the importance of transient availability of resources in propensity to invade.

  2. Spreading means that there is a dominant colonization of a habitat from the loss of natural controls such as resistance from the autochthonous species.

  3. In their study, Sebert-Cuvillier et al. [29] show that the species strong competition for space and light ends up at a point of high mortality.

  4. Although asymmetric games occur between organisms competing for territories, we use symmetric payoff matrix, notably in terms of interaction costs, for three reasons: (1) we are interested in the best response of a species valuing the contested resource up to a certain cost of competition; (2) should the costs be species-indexed, the game would be immediately solved and the dynamic analysis would be futile; (3) if the payoff matrix were asymmetric, we would not be able to distinguish between payoff asymmetry and semi-discrete population dynamics when analyzing the long-term population values.

  5. In evolutionary game theory, the rational choice of a strategy—originally implied in game theory—is replaced by the fact that the strategy has been successful during the evolutionary process.

  6. Comparing the costs to the benefits obtained following an interaction determines the net gain or loss, and this value is referred to as the payoff. Different strategies result in different payoffs. Evolutionary ecologists treat these strategies as phenotypes. The most successful species, due to their specific strategies, maximize their payoffs and increase their abilities to reproduce. The organism with the best interaction strategy will end up with the highest fitness. According to MacDougall et al. [20], when competition between exotic and native species emerges, fitness inequality determines which species will be competitively excluded.

  7. Negative Jacobian matrix eigenvalues signify that states are stable, positive that they are unstable, and nil mean that we cannot conclude.

  8. Davies and Johnson [7] point out that quantifying the biotic resistance of various states would be extremely valuable.

References

  1. Bischi, G.-I., Lamantia, F., & Sbragia, L. (2009). Strategic interaction and imitation dynamics in patch differentiated exploitation of fisheries. Ecological Complexity, 6, 353–362.

    Article  Google Scholar 

  2. Born, W., Rauschmayer, F., & Bräuer, I. (2005). Economic evaluation of biological invasions—a survey. Ecological Economics, 55, 321–336.

    Article  Google Scholar 

  3. Byers, J., & Noonburg, E. (2003). Scale dependent effects of biotic resistance to biological invasion. Ecology, 84, 1428–1433.

    Article  Google Scholar 

  4. Byun, C., de Blois, S., & Brisson, J. (2013). Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology, 101, 128–139.

    Article  Google Scholar 

  5. Clark, C. (1990). Mathematical bioeconomics: the optimal management of renewable resources. New York: Wiley.

    Google Scholar 

  6. Crawley, M. J. (1986). The population Biology of invaders. Philosophical transactions royal society London, B 314, 711-731.

  7. Davies, K., & Johnson, D. (2011). Are we missing the boat on preventing the spread of invasive plants in rangelands? Invasive Plant Science and Management, 4, 166–171.

    Article  Google Scholar 

  8. Davis, S., & Pelsor, M. (2001). Experimental support for a resource-based mechanistic model of invasibility. Ecology Letters, 4, 421–428.

    Article  Google Scholar 

  9. Davis, S., Landis, A., Nuzzo, V., Blossey, B., Gerber, E., & Hinz, L. (2006). Demographic models inform selection of biocontrol agents for garlic mustard (Alliaria Petiolata). Ecological Applications, 16, 2399–2410.

    Article  Google Scholar 

  10. De Wit, M., Crookes, D., & van Wilgen, B. (2001). Conflicts of interest in environmental management: estimating the costs and benefits of a tree invasion. Biological Invasions, 3, 167–178.

    Article  Google Scholar 

  11. Ellison, G., & Fudenberg, D. (1995). Word-of-mouth communication and social learning. Quarterly Journal of Economics, 110, 93–125.

    Article  Google Scholar 

  12. Elton, C. (1958). The ecology of invasions by animals and plants. New York: Wiley.

    Book  Google Scholar 

  13. Hofbauer, J., & Sigmund, K. (1998). Evolutionary games and population dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  14. Jayasuriya, R., Jones, R., & Van de Ven, R. (2011). A bioeconomic model for determining the optimal response strategies for a new weed incursion. Journal of Bioeconomics, 13, 45–72.

    Article  Google Scholar 

  15. Johnstone, I. (1986). Plant invasion windows: a time based classification of invasion potential. Biological Reviews, 61, 369–394.

    Article  Google Scholar 

  16. Knight, K., Oleksyn, J., Jagodzinski, A., Reich, P., & Kasprowicz, M. (2008). Overstorey tree species regulate colonization by native and exotic plants: a source of positive relationships between understorey diversity and invasibility. Diversity and Distribution, 14, 666–675.

    Article  Google Scholar 

  17. Kolar, C. (2001). Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution, 16, 199–204.

    Article  Google Scholar 

  18. Kolb, A., Alpert, P., Enters, D., & Holzapfel, C. (2002). Patterns of invasion within a grassland community. Journal of Ecology, 90, 871–881.

    Article  Google Scholar 

  19. Lonsdale, W. (1999). Global patterns of plant invasions and the concept of invasibility. Ecology, 80, 1522–1536.

    Article  Google Scholar 

  20. MacDougall, A., Gilbert, B., & Levine, J. (2009). Plant invasions and the Niche. Journal of Ecology, 97, 609–615.

    Article  Google Scholar 

  21. Maron, J., & Marler, M. (2007). Native plant diversity resists invasion at both low and high resource levels. Ecology, 88, 2651–2661.

    Article  Google Scholar 

  22. Marten, A., & Moore, C. (2011). An option based bioeconomic model for biological and chemical control of invasive species. Ecological Economics, 88, 1098–1104.

    Google Scholar 

  23. Meiners, S. (2007). Native and exotic plant species exhibit similar population dynamics during succession. Ecology, 88, 1098–1104.

    Article  Google Scholar 

  24. Olson, L., & Roy, S. (2002). The economics of controlling a stochastic biological invasion. American Journal of Agricultural Economics, 84, 1311–1316.

    Article  Google Scholar 

  25. Ortega, Y., & Pearson, D. (2005). Weak vs. strong invaders of natural plant communities: assessing invasability and impact. Ecological Applications, 15, 651–661.

    Article  Google Scholar 

  26. Patten, B. (2010). Natural ecosystem design and control imperatives for sustainable ecosystem services. Ecological Complexity, 7, 282–291.

    Article  Google Scholar 

  27. Pimental, D., Lach, L., Zuniga, R., & Morrison, D. (2000). Environmental and economic costs of nonindigenous species in the United States. Bioscience, 50, 53–65.

    Article  Google Scholar 

  28. Ramula, S., Knight, T., Burns, J., & Buckley, Y. (2008). General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. Journal of Applied Ecology, 45, 1124–1133.

    Article  Google Scholar 

  29. Sebert-Cuvillier, E., Paccaut, F., Chabrerie, O., Endels, P., Goubet, O., & Decocq, G. (2007). Local population dynamics of an invasive tree species with a complex life-history cycle: a stochastic matrix model. Ecological Modelling, 201, 127–143.

    Article  Google Scholar 

  30. Shea, K., & Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution, 17, 170–176.

    Article  Google Scholar 

  31. Saphores, J.-D., & Shogren, J. (2005). Managing exotic pests under uncertainty: optimal control actions and bioeconomic investigations. Ecological Economics, 52, 327–339.

    Article  Google Scholar 

  32. Simberloff, D., & Von Holle, B. (1999). Positive interactions of non indigenous species: invasional meltdown? Biological Invasions, 1, 21–32.

    Article  Google Scholar 

  33. Starfinger, U. (1997). Introduction and naturalization of Prunus serotina in Central Europe. In, U. Starfinger, K. Edwards, I. Kowarik, & M. Williamson (Eds.), Plant invasions: ecological mechanisms and human responses. Backhuys Publishers, Leiden: The Netherlands.

  34. Van Wilgen, B., Richardson, D., & Le Maitre, D. (2001). The economic consequences of alien plant invasions. Environment, Development, and Sustainability, 3, 145–168.

    Article  Google Scholar 

  35. Vitousek, P., D’Antonio, C., Loope, L., & Westbrooks, R. (1996). Biological invasions as global environmental change. American Scientist, 84, 218–228.

    Google Scholar 

  36. Webster, C., Nelson, K., & Wangen, S. (2005). Stand dynamics of an insular population of an invasive tree, Acer Platanoides. Forest Ecology and Management, 208, 85–99.

    Article  Google Scholar 

  37. Weltzin, J., Muth, N., Von Holle, B., & Cole, P. (2003). Genetic diversity and invasibility: a test using a model system with a novel experimental design. Oikos, 103, 505–518.

    Article  Google Scholar 

  38. Williamson, M., & Fitter, A. (1996). The varying success of invaders. Ecology, 77, 1661–1666.

    Article  Google Scholar 

  39. Williamson, M. (1999). Invasions. Ecography, 22, 5–12.

    Article  Google Scholar 

  40. Zedler, J., & Kercher, S. (2004). Causes and consequences of invasive plants in wetlands: opportunities, opportunists and outcomes. Critical Reviews in Plant Sciences, 23, 431–452.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency through the Laboratory of Excellence ARBRE, a part of the Investments for the Future Program (ANR 11 - LABX-0002-01). The author is indebted to Matias Nunez (CNRS) and Serge Garcia (INRA) for their comments and feedback on different versions of the manuscript. The author would also like to thank the associate editor and the anonymous referee for their thorough reviews and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Z. Dragicevic.

Appendix

Appendix

$$ \begin{array}{c}\hfill {s}_{t+1}=1-{s}_t-{\overline{s}}_t \Pr \left[{\rho_{\overline{s}}}_s\Big|{s}_t\right]+{s}_t \Pr \left[{\rho}_{s\overline{s}}\Big|{\overline{s}}_t\right]\hfill \\ {}\hfill =1-{s}_t-{\overline{s}}_t \Pr \left[{s}_t\left(1-\tilde{q}\right)\Big|{s}_t\right]+{s}_t \Pr \left[{\overline{s}}_t\tilde{q}\Big|{\overline{s}}_t\right]\hfill \\ {}\hfill =1-{s}_t-{\overline{s}}_t\;{\scriptscriptstyle \frac{{\displaystyle {\int}_{1-\tilde{q}}^1{s}_t d{s}_t}}{{\displaystyle {\int}_0^1{s}_t d{s}_t}}}+{s}_t{\scriptscriptstyle \frac{{\displaystyle {\int}_{\tilde{q}}^1{\overline{s}}_t d{\overline{s}}_t}}{{\displaystyle {\int}_0^1{\overline{s}}_t d{\overline{s}}_t}}}\hfill \\ {}\hfill ={s}_t\left(2\tilde{q}-2{\tilde{q}}^2\right)+{\left(\tilde{q}-1\right)}^2\hfill \end{array} $$
(18)
$$ \begin{array}{c}{r}_{t+1}={r}_t+{\overline{r}}_t \Pr \left[{\rho}_{\overline{r} r}\Big|{r}_t\right]-{r}_t \Pr \left[{\rho}_{r\overline{r}}\Big|{\overline{r}}_t\right]\\ {}={r}_t+{\overline{r}}_t \Pr \left[{r}_t\left(1-\tilde{p}\right)\Big|{r}_t\right]-{r}_t \Pr \left[{\overline{r}}_t\tilde{p}\Big|{\overline{r}}_t\right]\\ {}={r}_t+{\overline{r}}_t\;{\scriptscriptstyle \frac{{\displaystyle {\int}_{1-\tilde{p}}^1{r}_t d{r}_t}}{{\displaystyle {\int}_0^1{r}_t d{r}_t}}}-{r}_t{\scriptscriptstyle \frac{{\displaystyle {\int}_{\tilde{p}}^1\overline{r} d{\overline{r}}_t}}{{\displaystyle {\int}_0^1{\overline{r}}_t d{\overline{r}}_t}}}\\ {}={r}_t\left(2{\tilde{p}}^2-2\tilde{p}\right)+2\tilde{p}-{\tilde{p}}^2\end{array} $$
(19)

1.1 System 17

Solving the dynamical equation \( {s}_{t+1}={s}_t\left(2\tilde{q}-2{\tilde{q}}^2\right)+{\left(\tilde{q}-1\right)}^2 \) reduces to solving the nonhomogeneous recurrence relation \( {s}_t={c}_1\left(2\tilde{q}-2{\tilde{q}}^2\right)+{\left(\tilde{q}-1\right)}^2 \).Withinthisrelation, \( {s}_t={c}_1\left(2\tilde{q}-2{\tilde{q}}^2\right) \) is the associated homogeneous recurrence relation, which solution is \( {s}_t={c}_1{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^{t-1} \). The nonhomogeneous part c 2 yields \( {c}_2={\scriptscriptstyle \frac{{\left(\tilde{q}-1\right)}^2}{1-{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^{t-1}}} \) from which we obtain \( {c}_1={\scriptscriptstyle \frac{{\left(\tilde{q}-1\right)}^2}{\left[1-{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^{t-1}\left]\kern0.5em \right[{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^t-{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^{t-1}\right]}} \) and finally \( {s}_t^{*}={\scriptscriptstyle \frac{{\left(\tilde{q}-1\right)}^2{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^t}{\left[1-{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^{t-1}\left]\kern0.5em \right[{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^t-{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^{t-1}\right]}} \). The final condition is \( {s}_t^{\prime }>0\iff {\scriptscriptstyle \frac{-4{\left(\tilde{q}-1\right)}^4{\tilde{q}}^2{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^t \ln \left(2\tilde{q}-2{\tilde{q}}^2\right)}{\left(2{\tilde{q}}^2-2\tilde{q}+1\right){\left[{\left(2\tilde{q}-2{\tilde{q}}^2\right)}^t+2{\tilde{q}}^2-2\tilde{q}\right]}^2}}>0 \). The same rationale applies to r t + 1.

1.2 Proposition 3 and Proposition 4

We construct the Jacobian matrix for the dynamical system D t + 1 from the partial derivatives over the availability of resources and the survival rate. The eigenvalues of the Jacobian matrix of five steady-state configurations S yield as follows.

$$ J\left(\alpha, \mu \right)=\left[\begin{array}{l}2\left( s-1\right) a-\left(2 s-1\right) b-\lambda \kern2em 2\left( s-1\right) f-\left(2 s-1\right) d\hfill \\ {}-2\left( r-1\right) a+\left(2 r-1\right) b\kern2em -2\left( r-1\right) f+\left(2 r-1\right) d-\lambda \hfill \end{array}\right] $$

where

$$ \begin{array}{lll} a={\scriptscriptstyle \frac{\mu \left(1-\mu \right) w\left(3 c- w\right)}{{\left[ w\left(\mu +\alpha -1\right)- c\left(3\mu -1\right)\right]}^2}}\hfill & b={\scriptscriptstyle \frac{2{\mu}^2\left(\mu -1\right) w\left(3 c- w\right)\left(2 c-\alpha w\right)}{{\left[ w\left(\mu +\alpha -1\right)- c\left(3\mu -1\right)\right]}^3}}\hfill & {s}^{\ast }=-{\scriptscriptstyle \frac{{\left(\tilde{q}-1\right)}^2\left(2\tilde{q}-2{\tilde{q}}^2\right)}{{\left[1-\left(2\tilde{q}-2{\tilde{q}}^2\right)\right]}^2}}\hfill \\ {} f={\scriptscriptstyle \frac{\left[\left(\alpha -1\right) w+ c\right]\left(\alpha w-2 c\right)}{{\left[ w\left(\alpha +\mu -1\right)- c\left(3\mu -1\right)\right]}^2}}\hfill & d={\scriptscriptstyle \frac{2\mu \left[\left(\alpha -1\right) w+ c\right]{\left(\alpha w-2 c\right)}^2}{{\left[ w\left(\alpha +\mu -1\right)- c\left(3\mu -1\right)\right]}^3}}\hfill & {r}^{*}=-{\scriptscriptstyle \frac{\left({\tilde{p}}^2-2\tilde{p}\left)\right(2\tilde{p}-2{\tilde{p}}^2\right)}{{\left[1-\left(2\tilde{p}-2{\tilde{p}}^2\right)\right]}^2}}\hfill \end{array} $$

For S = (0, 0)

$$ J\left(\alpha, \mu \right)=\left[\begin{array}{l}-2 a+ b-\lambda \kern2em -2 f+ d\hfill \\ {}\kern1em 2 a- b\kern3em 2 f- d-\lambda \hfill \end{array}\right] $$

which gives

$$ \lambda =0 $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.25

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.75

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.90

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.99

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

$$ \lambda =-2 a+ b+2 f- d $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

+0.04

+0.04

+0.09

+1.17

+0.29

+0.17

−0.07

−923.62

0.01

+0.04

+0.04

+0.09

+1.16

+0.29

+0.18

−0.25

+1,057.52

0.10

+0.04

+0.04

+0.08

+1.03

+0.26

+0.17

+1.81

+1.37

0.25

+0.03

+0.03

+0.06

+0.62

+0.13

+0.27

+0.09

+0.08

0.50

+0.00

−0.00

−0.05

−2.69

−0.10

−0.01

−0.00

+0.00

0.75

−0.08

−0.10

−0.82

−1.15

−0.03

−0.01

−0.00

−0.00

0.90

−0.32

−0.47

−6.59

−0.35

−0.02

−0.00

−0.00

−0.00

0.99

−3.92

−1.00

−2.17

−0.17

−0.01

−0.00

−0.00

−0.00

1.00

−4.21

−0.73

−1.92

−0.16

−0.01

−0.00

−0.00

+0.00

For S = (0, 1)

$$ J\left(\alpha, \mu \right)=\left[\begin{array}{l}-2 a+ b-\lambda \kern1em -2 f+ d\hfill \\ {}\kern2em b\kern4em d-\lambda \hfill \end{array}\right] $$

which gives

$$ \lambda ={\scriptscriptstyle \frac{1}{2}}\left[-\sqrt{-8\left( bf- ad\right)+{\left(2 a- b- d\right)}^2}-2 a+ b+ d\right] $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

0.00

−0.00

−0.01

−0.57

−0.16

−0.07

+0.01

+18.64

0.01

0.00

−0.00

−0.01

−0.58

−0.16

−0.07

+0.05

−960.50

0.10

0.00

−0.00

−0.01

−0.66

−0.22

−0.11

−0.89

−0.65

0.25

0.00

−0.00

−0.01

−0.85

−0.41

−0.20

−0.02

−0.02

0.50

0.00

−0.00

−0.05

−2.69

−0.10

−0.01

−0.00

0.00

0.75

0.00

−0.01

−0.36

−0.82

−0.02

−0.00

−0.00

0.00

0.90

0.00

−0.05

−4.27

−0.27

−0.01

−0.00

−0.00

0.00

0.99

0.00

−0.90

−2.07

−0.17

−0.01

−0.00

−0.00

0.00

1.00

−4.21

−0.73

−1.92

−0.16

−0.01

−0.00

−0.00

0.00

$$ \lambda ={\scriptscriptstyle \frac{1}{2}}\left[+\sqrt{-8\left( bf- ad\right)+{\left(2 a- b- d\right)}^2}-2 a+ b+ d\right] $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

0.00

−0.00

−0.00

−0.00

+0.32

+0.23

+1.46

+1,026.52

0.01

0.00

−0.00

−0.00

−0.00

+0.32

+0.24

+1.90

0.00

0.10

0.00

−0.00

−0.00

−0.00

+0.41

+0.64

−0.05

0.00

0.25

0.00

−0.00

−0.01

−0.07

+0.73

−0.00

−0.01

0.00

0.50

0.00

−0.00

−0.00

−0.00

+0.00

−0.00

+0.00

0.00

0.75

0.00

+0.00

0.04

+0.12

+0.00

+0.00

+0.00

+0.00

0.90

0.00

+0.00

−0.66

+0.01

+0.00

+0.00

+0.00

+0.00

0.99

0.00

−0.00

−0.00

+0.00

+0.00

+0.00

+0.00

+0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

For S = (1, 0)

$$ J\left(\alpha, \mu \right)=\left[\begin{array}{l}- b-\lambda \kern2em - d\hfill \\ {}2 a- b\kern1em 2 f- d-\lambda \hfill \end{array}\right] $$

which gives

$$ \lambda ={\scriptscriptstyle \frac{1}{2}}\left[-\sqrt{-8\left( ad- b f\right)+{\left( b-2 f+ d\right)}^2}- b+2 f- d\right] $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

0.00

−0.00

−0.00

+0.00

−0.00

+0.00

−0.21

−943.11

0.01

0.00

−0.00

+0.00

−0.00

0.00

0.00

−0.45

+0.00

0.10

0.00

0.00

0.00

−0.00

+0.00

0.00

0.00

−0.00

0.25

0.00

−0.00

+0.00

−0.00

0.00

+0.00

+0.00

−0.00

0.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.75

−0.08

−0.09

−0.46

−0.26

−0.01

−0.00

−0.00

−0.00

0.90

−0.32

−0.42

−2.68

−0.07

−0.00

−0.00

−0.00

−0.00

0.99

−3.92

−0.10

−0.13

−0.01

−0.00

−0.00

−0.00

−0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

$$ \lambda ={\scriptscriptstyle \frac{1}{2}}\left[+\sqrt{-8\left( ad- b f\right)+{\left( b-2 f+ d\right)}^2}- b+2 f- d\right] $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

+0.04

+0.04

+0.10

+1.50

+0.32

+0.18

+0.00

0.00

0.01

+0.04

+0.04

+0.10

+1.50

+0.32

+0.18

0.00

+1,057.52

0.10

+0.04

+0.04

+0.10

+1.47

+0.28

+0.08

+1.85

+1.37

0.25

+0.03

+0.03

+0.08

+1.39

0.00

+0.38

+0.09

+0.08

0.50

0.00

+0.00

+0.00

+0.77

+0.02

+0.00

+0.00

0.75

0.00

+0.00

0.00

0.00

−0.00

−0.00

−0.00

−0.00

0.90

0.00

−0.00

+0.00

+0.00

−0.00

+0.00

−0.00

+0.00

0.99

0.00

+0.00

−0.00

+0.00

+0.00

+0.00

+0.00

+0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

For S = (1, 1)

$$ J\left(\alpha, \mu \right)=\left[\begin{array}{l}- b-\lambda \kern2em - d\hfill \\ {}\kern1em b\kern2em d-\lambda \hfill \end{array}\right] $$

which gives

$$ \lambda =0 $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.10

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.25

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.75

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.90

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.99

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

$$ \lambda =- b+ d $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

0.00

+0.00

+0.00

+0.25

−0.19

−0.16

−1.33

−1,025.67

0.01

0.00

+0.00

+0.00

+0.24

−0.19

−0.17

−1.75

+960.50

0.10

0.00

+0.00

+0.00

+0.22

−0.21

−0.44

+0.91

+0.65

0.25

0.00

+0.00

+0.00

+0.14

−0.19

+0.09

+0.02

+0.02

0.50

0.00

−0.00

−0.00

−0.77

−0.02

−0.00

−0.00

0.00

0.75

0.00

−0.00

−0.04

−0.19

−0.00

−0.00

−0.00

−0.00

0.90

0.00

−0.00

+1.01

−0.02

−0.00

−0.00

−0.00

−0.00

0.99

0.00

+0.00

+0.02

−0.00

−0.00

−0.00

−0.00

−0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

For S = (s , r )

$$ J\left(\alpha, \mu \right)=\left[\begin{array}{cc}\hfill 2\left({s}^{\ast }-1\right) a-\left(2{s}^{\ast }-1\right) b-\lambda \hfill & \hfill 2\left({s}^{\ast }-1\right) f-\left(2{s}^{\ast }-1\right) d\hfill \\ {}\hfill -2\left({r}^{\ast }-1\right) a+\left(2{r}^{\ast }-1\right) b\hfill & \hfill -2\left({r}^{\ast }-1\right) f+\left(2{r}^{\ast }-1\right) d-\lambda \hfill \end{array}\right] $$

which gives

$$ \lambda =-{\scriptscriptstyle \frac{1}{2}}\left[2\left({r}^{\ast }-1\right) f-2\left({r}^{\ast }-1\right) d-2\left({s}^{\ast }-1\right) a+\left(2{s}^{\ast }-1\right) b\right]-\sqrt{\begin{array}{c}4\left({s}^{*}-1\right)\left({r}^{*}-1\right) a f-2\left({s}^{*}-1\right)\left(2{r}^{*}-1\right) a d\\ {}-2\left(2{s}^{*}-1\right)\left({r}^{*}-1\right) b f+\left(2{s}^{*}-1\right)\left(2{r}^{*}-1\right) b d\\ {}+\left[\left(2{r}^{*}-1\right) b-2\left({r}^{*}-1\right) a\right]\left[\;2\left({s}^{*}-1\right) f-\left(2{s}^{*}-1\right) d\right]\\ {}+{\scriptscriptstyle \frac{1}{4}}{\left[2\left({r}^{*}-1\right) f-2\left({r}^{*}-1\right) d-2\left({s}^{*}-1\right) a+\left(2{s}^{*}-1\right) b\right]}^2\end{array}} $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

+0.02

−2.94

−933.66

0.01

+0.02

−2.87

1,029.80

0.10

+0.02

−2.26

1.27

0.25

+0.01

0.50

0.00

−0.00

−0.02

−0.24

−0.06

−0.01

−0.00

0.00

0.75

−0.04

−0.04

−0.20

−0.01

0.90

−0.16

−0.01

0.99

−0.35

−0.00

1.00

−2.10

−0.37

$$ \lambda =-{\scriptscriptstyle \frac{1}{2}}\left[2\left({r}^{*}-1\right) f-2\left({r}^{*}-1\right) d-2\left({s}^{*}-1\right) a+\left(2{s}^{*}-1\right) b\right]+\sqrt{\begin{array}{c}4\left({s}^{*}-1\right)\left({r}^{*}-1\right) a f-2\left({s}^{*}-1\right)\left(2{r}^{*}-1\right) a d\\ {}-2\left(2{s}^{*}-1\right)\left({r}^{*}-1\right) b f+\left(2{s}^{*}-1\right)\left(2{r}^{*}-1\right) b d\\ {}+\left[\left(2{r}^{*}-1\right) b-2\left({r}^{*}-1\right) a\right]\left[2\left({s}^{*}-1\right) f-\left(2{s}^{*}-1\right) d\right]\\ {}+{\scriptscriptstyle \frac{1}{4}}{\left[2\left({r}^{*}-1\right) f-2\left({r}^{*}-1\right) d-2\left({s}^{*}-1\right) a+\left(2{s}^{*}-1\right) b\right]}^2\end{array}} $$

α|μ

0.00

0.01

0.10

0.25

0.50

0.75

0.90

0.99

1.00

0.00

+0.02

−3.31

−1,006.19

0.01

+0.02

−3.24

1,029.80

0.10

+0.02

−2.64

1.27

0.25

+0.01

0.50

−0.00

−0.02

−0.24

−0.01

−0.01

−0.01

0.00

0.75

−0.04

−0.06

−0.59

0.90

−0.32

0.99

−0.65

1.00

−2.10

−0.37

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragicevic, A.Z. Bayesian Population Dynamics of Spreading Species. Environ Model Assess 20, 17–27 (2015). https://doi.org/10.1007/s10666-014-9416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-014-9416-4

Keywords

Navigation