Skip to main content
Log in

A Vector Approach for Modeling Landscape Corridors and Habitat Connectivity

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Landscape connectivity is an important consideration in understanding and reasoning about ecological systems. Two features within a landscape can be viewed as connected whenever a path exists between them. In many applications, the relevance of a potential path is assessed relative to the cost or resistance it presents to traversal. Typically, the least-cost paths between landscape features are used to approximate the potential for connectivity. However, traversal of a landscape between two locations may not necessarily conform to a least-cost path. Moreover, recent research has begun to cast some doubt on the how different types of landscape features may influence movement. Thus, it is important to consider the geographic bounds to movement more broadly. Continuous (i.e., raster) and discrete (i.e., vector) representations of connectivity are commonly used to model the spatial relationships among landscape features. While existing approaches can shed meaningful insights on system topology and connectivity, they are still limited in their ability to represent certain types of movement and are heavily influenced by scale of the areal units and how cost of landscape traversal is derived. In order to better address these issues, this paper proposes a new vector-based approach for delineating the geographic extent of corridors and assessing connectivity among landscape features. The developed approach is applied to evaluate habitat connectivity for salamanders to highlight the benefits of this modeling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adriaensen, F., Chardon, J. P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., & Matthysen, E. (2003). The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning, 64(4), 233–247.

    Article  Google Scholar 

  2. Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47, 761–776.

    Article  Google Scholar 

  3. Arscott, D. B., Tockner, K., & Ward, J. V. (2001). Thermal heterogeneity along a braided floodplain river (Tagliamento River, Northeastern Italy). Canadian Journal of Fisheries and Aquatic Sciences, 58(12), 2359–2373.

    Article  Google Scholar 

  4. Barrows, C. W., Fleming, K. D., & Allen, M. F. (2011). Identifying habitat linkages to maintain connectivity for corridor dwellers in a fragmented landscape. The Journal of Wildlife Management, 75(3), 682–690.

    Article  Google Scholar 

  5. Beier, P., Majka, D. R., & Newell, S. L. (2009). Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecological Applications, 19(8), 2067–2077.

    Article  Google Scholar 

  6. Beier, P., Spencer, W., Baldwin, R. F., & McRae, B. H. (2011). Toward best practices for developing regional connectivity maps. Conservation Biology, 25(5), 879–892.

    Article  Google Scholar 

  7. Berven, K. A., & Grudzien, T. A. (1990). Disperal in the wood frog (rana sylvatica): implications for genetic population structure. Evolution, 44(8), 2047–2056.

    Article  Google Scholar 

  8. Brost, B. M., & Beier, P. (2012). Comparing linkage designs based on land facets to linkage designs based on focal species. PLOS ONE, 7(11), e48965.

    Article  CAS  Google Scholar 

  9. Cabezas, A., Gonzalez-Sanchis, M., Gallardo, B., & Comin, F. A. (2011). Using continuous surface water level and temperature data to characterize hydrological connectivity in riparian wetlands. Environmental Monitoring and Assessment., 184, 485–500.

    Article  Google Scholar 

  10. Chetkiewicz, C.-L. B., & Boyce, M. S. (2009). Use of resource selection functions to identify conservation corridors. Journal of Applied Ecology., 46, 1036–1047.

    Article  Google Scholar 

  11. Church, R.L., & Murray. A.T. (2008). Business site selection, location analysis and GIS. Wiley

  12. Clean Water Act of 1972, 33 U.S.C. § 1251 et seq. (2013).

  13. Compton, B. W., McGarigal, K., Cushman, S. A., & Gamble, L. R. (2007). A resistant-kernal model of connectivity for amphibians that breed in vernal pools. Conservation Biology, 21(3), 788–799.

    Article  Google Scholar 

  14. Cosentino, B. J., Schooley, R. L., & Phillips, C. A. (2011). Connectivity of agroecosystems: dispersal costs can vary among crops. Landscape Ecology, 26(3), 371–379.

    Article  Google Scholar 

  15. Cushman, S. A. (2006). Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biological Conservation, 128(2), 231–240.

    Article  Google Scholar 

  16. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.

    Article  Google Scholar 

  17. Diaz-Ramirez, J.N., McAnally, W.H. & Martin, J.L. (2010). A review of HSPF evaluations on the southern united states and puerto rico. ASABE—21st Century Watershed Technology: Improving Water Quality and Environment, 177–184.

  18. Gamble, L. R., McGarigal, K., & Compton, B. W. (2007). Fidelity and dispersal in the pond-breeding amphibian, Ambystoma opacum: Implications for spatial-temporal population dynamics and conservation. Biological Conservation, 139, 247–257.

    Article  Google Scholar 

  19. Gurrutxaga, M., Lozano, P. J., & del Barrio, G. (2010). GIS-based approach for incorporating the connectivity of ecological networks into regional planning. Journal for Nature Conservation, 18, 318–326.

    Article  Google Scholar 

  20. Hanski, I. (1999). Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209–219.

    Article  Google Scholar 

  21. Huber, D.L. (1980). Alternative methods in corridor routing. Unpublished Master Thesis, The University of Tennessee, Knoxville.

  22. Huck, M., Jedrzejewski, W., Borowik, T., Milosz-Cielma, M., Schmidt, K., Jedrezejewska, B., Nowak, S., & Myslajek, R. W. (2010). Habitat suitability, corridors and dispersal barriers for large carnivores in Poland. Acta Theriologica, 55(2), 177–192.

    Article  Google Scholar 

  23. Kautz, R., Kawula, R., Hoctor, T., Comiskey, J., Jansen, D., Jennings, D., Kasbohm, J., Mazzotti, F., McBride, R., Richardson, L., & Root, K. (2006). How much is enough? Landscape-scale conservation for the florida panther. Biological Conservation, 130(1), 118–133.

    Article  Google Scholar 

  24. LaRue, M. A., & Nielsen, C. K. (2008). Modeling potential dispersal corridors for cougars in Midwestern North America using least-cost path methods. Ecological Modeling, 212, 372–381.

    Article  Google Scholar 

  25. Levin, S. A. (1991). The problem of pattern and scale in ecology. Ecology, 73(6), 1943–1967.

    Article  Google Scholar 

  26. Lookingbill, T. R., Gardner, R. H., Rerrari, J. R., & Keller, C. E. (2010). Combining a dispersal model with network theory to assess habitat connectivity. Ecological Applications., 20(2), 427–441.

    Article  Google Scholar 

  27. Lombard, K., & Church, R. L. (1993). The gateway shortest path problem: generating alternative routes for a corridor location problem. Geographical Systems., 1, 25–45.

    Google Scholar 

  28. Matisziw, T. C., & Murray, A. T. (2009). Connectivity change in habitat networks. Landscape Ecology, 24, 89–100.

    Article  Google Scholar 

  29. MDC. (2012). Wetland Values, Conservation Commission of Missouri http://mdc.mo.gov/landwater-care/wetlands-management/wetland-values (accessed 01/07/2012 2012).

  30. McRae, B. H., Hall, S. A., Beier, P., & Theobald, D. M. (2012). Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLOS ONE, 7(12), e52604.

    Article  CAS  Google Scholar 

  31. Mortelliti, A., & Boitani, L. (2008). Interaction of food resources and landscape structure in determining the probability of patch use by carnivores in fragmented landscapes. Landscape Ecology, 23, 285–298.

    Article  Google Scholar 

  32. Openshaw, S. (1984). The modifiable areal unit problem. In Concepts and techniques in modern geography, Volume 8. Norwich: Geobooks.

  33. Parks, S. A., McKelvey, K. S., & Schwartz, M. K. (2012). Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conservation Biology, 27(1), 145–154.

    Article  Google Scholar 

  34. Pinto, N., & Keitt, T. (2009). Beyond the least-cost path: evaluating redundancy using a graph-theoretic approach. Landscape Ecology, 24, 253–266.

    Article  Google Scholar 

  35. Pittman, S. E., Osbourn, M. S., & Semlitsch, R. D. (2014). Movement ecology of amphibians: a missing component to understanding amphibian declines. Biological Conservation, 169, 44–53.

    Article  Google Scholar 

  36. Poor, E. E., Loucks, C., Jakes, A., & Urban, D. L. (2012). Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations. PLOS ONE, 7(11), e49390.

    Article  CAS  Google Scholar 

  37. Pyke, C. R. (2005). Assessing suitability for conservation action: prioritizing interpond linkages for the California tiger salamander. Conservation Biology., 19(2), 492–503.

    Article  Google Scholar 

  38. Rapanos v. United States, (2006) 547. U. 715. Retrieved from http://www.law.cornell.edu/supct/html/04-1034.ZS.html.

  39. Rentch, J. S., Anderson, J. T., Lamont, S., Sencindiver, J., & Eli, R. (2008). Vegetation along hydrologic, edaphic, and geochemical gradients in a high-elevation poor fen in Canaan Valley, West Virginia. Wetlands Ecology and Management, 16(3), 237–253.

    Article  Google Scholar 

  40. Ribeiro, R., Carretero, M., Sillero, N., Alarcos, G., Ortiz-Santaliestra, M., Lizana, M., & Llorente, G. A. (2011). The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns? Landscape Ecology, 26(5), 673–682.

    Article  Google Scholar 

  41. Ricketts, T. H. (2001). The matrix matters: effective isolation in fragmented landscapes. American Naturalist, 158(1), 87–99.

    Article  CAS  Google Scholar 

  42. Rouget, M., Cowling, R. M., Lombard, A. T., Knight, A. T., & Graham, I. H. K. (2006). Designing large-scale conservation corridors for pattern and process. Conservation Biology, 20, 549–561.

    Article  Google Scholar 

  43. Samecka-Cymerman, A., Stankiewicz, A., Kolon, K., Kempers, A. J., & Leuven, R. S. E. W. (2010). Market basket analysis: a new tool in ecology to describe chemical relations in the environment—a case study of the fern athyrium distentifolium in the Tatra National Park in Poland. Journal of Chemical Ecology, 36(9), 1029–1034.

    Article  CAS  Google Scholar 

  44. Sawyer, S. C., Epps, C. W., & Brashares, J. S. (2011). Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? Journal of Applied Ecology, 48(3), 668–678.

    Article  Google Scholar 

  45. Semlitsch, R. D., Ecrement, S., Fuller, A., Hammer, K., Howard, J., Krager, C., Mozeley, J., Ogle, J., Shipman, N., Speier, J., Walker, M., & Walters, B. (2012). Natural and anthropogenic substrates affect movement behavior of the Southern Graycheek salamander (Plethodon metcalfi). Canadian Journal of Zoology, 90, 1128–1135.

    Article  Google Scholar 

  46. Semlitsch, R. D., & Bodie, J. R. (1998). Are small, isolated wetlands expendable? Conservation Biology, 12, 1129–1133.

    Article  Google Scholar 

  47. Semlitsch, R. D. (2008). Differentiating migration and dispersal processes for pond-breeding amphibians. Journal of Wildlife Management, 72(1), 260–267.

    Article  Google Scholar 

  48. Semlitsch, R. D., Ryan, T. J., Hamed, K., Chatfield, M., Drehman, B., Pekarek, N., Spath, M., & Watland, A. (2007). Salamander abundance along road edges and within abandoned logging roads in appalachian forests. Conservation Biology, 21(1), 159–167.

    Article  Google Scholar 

  49. Schalk, C. M., & Luhring, T. M. (2010). Vagility of aquatic salamanders: implications for wetland connectivity. Journal of Herpetology, 44(1), 104–109.

    Article  Google Scholar 

  50. Shulse, C. D., Semlitsch, R. D., Trauth, K. M., & Williams, A. D. (2010). Influences of design and landscape placement parameters on amphibian abundance in constructed wetlands. Wetlands, 30, 915–928.

    Article  Google Scholar 

  51. Smith, M. A., & Green, D. M. (2005). Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography, 28(1), 110–128.

    Article  Google Scholar 

  52. Snodgrass, J. W., Ackerman, J. W., Bryan, A. L., Jr., & Burger, J. (1999). Influence of hydroperiod, isolation, and heterospecifics on the distribution of aquatic salamanders (Siren and Amphiuma) among depression wetlands. Copeia, 1, 107–113.

    Article  Google Scholar 

  53. Todd, B. L., Matheney, M.P., Lobb, M.D. & Schrader L.H. (1994). Locust creek basin management plan.

  54. Urban, D., & Keitt, T. (2001). Landscape connectivity: a graph theoretic perspective. Ecology, 82(5), 1205–1218.

    Article  Google Scholar 

  55. USFWS. (2012). Wetlands Mapper Documentation and Instructions Manual. http://www.fws.gov/wetlands/Documents/Wetlands-Mapper-Instructions-Manual.pdf (accessed 04/23/2012).

  56. Verbeylen, G., De Bruyn, L., Adriaensen, F., & Matthysen, E. (2003). Does matrix resistance influence red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landscape Ecology, 18, 791–805.

    Article  Google Scholar 

  57. Whiles, M. R., Lips, K. R., Pringle, C. M., Kilham, S. S., Bixby, R. J., Brenes, R., Connelly, S., Colon-Gaud, J. C., Hunte-Brown, M., Huryn, A. D., Montgomery, C., & Peterson, S. (2006). The effects of amphibian population declines on the structure and function of neotropical stream ecosystems. Frontiers in Ecology and the Environment, 4(1), 27–34.

    Article  Google Scholar 

  58. Wien, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by a grant from the U.S. Environmental Protection Agency (EPA), Region 7. Although the research described in the article has been funded wholly or in part by the U.S. Environmental Protection Agency Region 7 through grant CD-97723401, it has not been subjected to any EPA review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Matisziw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matisziw, T.C., Alam, M., Trauth, K.M. et al. A Vector Approach for Modeling Landscape Corridors and Habitat Connectivity. Environ Model Assess 20, 1–16 (2015). https://doi.org/10.1007/s10666-014-9412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-014-9412-8

Keywords

Navigation