Skip to main content
Log in

The initiation of a planar fluid plume beneath a rigid lid

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The unsteady growth of a viscous fluid plume beneath a rigid upper lid is investigated. Two-dimensional (planar) flow is assumed, through a fissure in the horizontal lower boundary. Initially, the fluid exiting the bottom is assumed to form a semi-circular region, but rises as time progresses, and spreads across the upper boundary. The problem is modelled using Boussinesq theory, and solved using a time-dependent spectral method. These numerical solutions are also compared with the results of a simpler inviscid asymptotic solution. Results are indicated for different input fluid speeds and fissure widths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morton BR, Taylor GI, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc Lond A 234:1–23

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Jia X, McLaughlin JB, Derksen J, Ahmadi G (2013) Simulation of a mannequin’s thermal plume in a small room. Comput Math Appl 65:287–295

    Article  MATH  Google Scholar 

  3. Baines WD, Turner JS (1969) Turbulent buoyant convection from a source in a confined region. J Fluid Mech 37:51–80

    Article  ADS  Google Scholar 

  4. Taylor GI (1945) Dynamics of a mass of hot gas rising in air. Atomic Energy Commission MDDC 919. LADC 276. Los Alamos National Laboratory Research Library

  5. Woods AW (2010) Turbulent plumes in nature. Annu Rev Fluid Mech 42:391–412

    Article  ADS  Google Scholar 

  6. Hocking GC, Forbes LK (2009) Steady flow of a buoyant plume into a constant-density layer. J Eng Math 67:341–350

    Article  MathSciNet  MATH  Google Scholar 

  7. Turner JS (1962) The ‘starting plume’ in neutral surroundings. J Fluid Mech 13:356–368

    Article  ADS  MATH  Google Scholar 

  8. Tsang G (1970) Laboratory study of two-dimensional starting plumes. Atmos Environ 4:519–544

    Article  ADS  Google Scholar 

  9. Griffiths RW, Campbell IH (1990) Stirring and structure in mantle starting plumes. Earth Planet Sci Lett 99:66–78

    Article  ADS  Google Scholar 

  10. Davaille A, Limare A, Touitou F, Kumagai I, Vatteville J (2011) Anatomy of a laminar starting thermal plume at high Prandtl number. Exp Fluids 50:285–300

    Article  Google Scholar 

  11. Forbes LK (2008) Spectral solution methods for free-surface flow: the Rayleigh–Taylor problem. ANZIAM J 50:549–568

    Article  MathSciNet  Google Scholar 

  12. Forbes LK (2009) The Rayleigh–Taylor instability for inviscid and viscous fluids. J Eng Math 65:273–290

    Article  MathSciNet  MATH  Google Scholar 

  13. Forbes LK, Chen MJ, Trenham CE (2007) Computing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flow. J Comput Phys 221:269–287

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Forbes LK, Paul RA, Chen MJ, Horsley DE (2015) Kelvin-Helmholtz creeping flow at the interface between two viscous fluids. ANZIAM J 56:317–358

    Article  MathSciNet  MATH  Google Scholar 

  15. Forbes LK (2014) Planar Rayleigh-Taylor instabilities: outflows from a binary line-source system. J Eng Math 89:73–99

    Article  MathSciNet  MATH  Google Scholar 

  16. Krasny R (1986) Desingularization of periodic vortex sheet roll-up. J Comput Phys 65:292–313

    Article  ADS  MATH  Google Scholar 

  17. Williamson N, Srinarayana N, Armfield SW, McBain GB, Lin W (2008) Low-Reynolds-number fountain behaviour. J Fluid Mech 608:297–317

    Article  ADS  MATH  Google Scholar 

  18. Williamson N, Armfield SW, Lin W (2010) Transition behaviour of weak turbulent fountains. J Fluid Mech 655:306–326

    Article  ADS  MATH  Google Scholar 

  19. Farrow DE, Hocking GC (2006) A numerical model for withdrawal from a two-layer fluid. J Fluid Mech 549:141–157

    Article  ADS  MathSciNet  Google Scholar 

  20. Gray DD, Giorgini A (1976) The validity of the Boussinesq approximation for liquids and gases. Int J Heat Mass Transf 19:545–551

    Article  MATH  Google Scholar 

  21. Lee HG, Kim J (2012) A comparison study of the Boussinesq and the variable density models on buoyancy-driven flows. J Eng Math 75:15–27

    Article  MathSciNet  MATH  Google Scholar 

  22. Christodoulides P, Dias F (2009) Impact of a rising stream on a horizontal plate of finite extent. J Fluid Mech 621:243–258

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Milne-Thomson LM (1968) Theoretical hydrodynamics. Macmillan, London

    Book  MATH  Google Scholar 

  24. Kreyzig E (1988) Advanced engineering mathematics, 9th edn. Wiley, Hoboken

    Google Scholar 

  25. Sharp DH (1984) An overview of Rayleigh–Taylor instability. Physica D 12:3–18

    Article  ADS  MATH  Google Scholar 

  26. Yoshikawa T, Balk AM (2003) A conformal-mapping model for bubbles and fingers of the Rayleigh–Taylor instability. Math Comput Model 38:113–121

    Article  MathSciNet  MATH  Google Scholar 

  27. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Moore DW (1979) The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc R Soc Lond A 365:105–119

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Hunt GR, Coffrey CJ (2009) Characterising line fountains. J Fluid Mech 623:317–327

    Article  ADS  MATH  Google Scholar 

  30. van den Bremer TS, Hunt GR (2014) Two-dimensional planar plumes and fountains. J Fluid Mech 750:210–244

    Article  ADS  MathSciNet  Google Scholar 

  31. Lavelle JW (1995) The initial rise of a hydrothermal plume from a line segment source-results form a three-dimensional numerical model. Geophys Res Lett 22:159–162

    Article  ADS  Google Scholar 

  32. Yannopoulos PC (2006) An improved integral model for round turbulent buoyant jets. J Fluid Mech 547:267–296

    Article  ADS  MATH  Google Scholar 

  33. Moses E, Zocchi G, Libchaberii A (1993) An experimental study of laminar plumes. J Fluid Mech 251:581–601

    Article  ADS  Google Scholar 

  34. Kaye NB, Hunt GR (2006) Weak fountains. J Fluid Mech 558:319–328

    Article  ADS  MATH  Google Scholar 

  35. Lin W, Armfield SW (2000) Direct simulation of weak axisymmetric fountains in a homogeneous fluid. J Fluid Mech 403:67–88

    Article  ADS  MATH  Google Scholar 

  36. Desrayaud G, Lauriat G (1993) Unsteady confined buoyant plumes. J Fluid Mech 252:617–646

    Article  ADS  Google Scholar 

  37. Srinarayana N, Armfield SW, Lin W (2009) Laminar plane fountains impinging on a ceiling with an opposing heat flux. J Heat Mass Transf 52:4545–4552

    Article  MATH  Google Scholar 

  38. Letchford NA, Forbes LK, Hocking GC (2012) Inviscid and viscous models of axisymmetric fluid jets or plumes. ANZIAM J 53:228–250

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to two anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick S. Russell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, P.S., Forbes, L.K. & Hocking, G.C. The initiation of a planar fluid plume beneath a rigid lid. J Eng Math 106, 107–121 (2017). https://doi.org/10.1007/s10665-016-9895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-016-9895-1

Keywords

Mathematics Subject Classification

Navigation