Skip to main content
Log in

The steady-state response of size-dependent functionally graded nanobeams to subharmonic excitation

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This study aims to investigate the nonlinear forced vibration of functionally graded (FG) nanobeams. It is assumed that material properties are gradually graded in the direction of thickness. Nonlocal nonlinear Euler–Bernoulli beam theory is used to derive nonlocal governing equations of motion. The linear eigenmodes of FG nanobeams are used to transform a partial differential equation of motion into a system of ordinary differential equations via the Galerkin method. The multiple scale method is used to find the governing equations of the steady-state responses of FG nanobeams excited by a distributed harmonic force with constant intensity. It is also assumed that the working frequency is close to three times greater than the lowest natural frequency. Based on the equation governing the linear natural frequencies of FG nanobeams, the influence of the small scale parameter, material composition, and stiffness of the foundation on the linear relationship among natural frequencies is studied. Results show that superharmonic response or a combination of resonances may occur as well as a subharmonic response depending on the power-law index and stiffness of the foundation. Then the governing equations of a steady-state response of FG nanobeams for four possible solutions are obtained depending on the value of the small scale parameter. It is shown that the simplest response of FG nanobeams is a subharmonic response or superharmonic response. The equations governing the frequency–response curves are obtained and the effects of the power-law index and small scale parameter on them are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ke L-L, Yang J, Kitipornchai S, Bradford MA (2012) Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos Struct 94:3250–3257

    Article  Google Scholar 

  2. Kanani AS, Niknam H, Ohadi AR, Aghdam MM (2014) Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Compos Struct 115:60–68

    Article  Google Scholar 

  3. Simsek M, Yurtcu HH (2013) Analytical solutions for bending and buckling of functionally graded nano-beams based on the nonlocal Timoshenko beam theory. Compos Struct 97:378–386

    Article  Google Scholar 

  4. Lei J, He Y, Zhang B, Gan Z, Zeng P (2013) Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory. Int J Eng Sci 72:36–52

    Article  Google Scholar 

  5. Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990

    Article  Google Scholar 

  6. Ansari R, Gholami R, Sahmani S (2011) Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos Struct 94:221–228

    Article  MATH  Google Scholar 

  7. Ansari R, Gholami R, FaghihShojaei M, Mohammadi V, Sahmani S (2013) Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos Struct 100:385–397

    Article  Google Scholar 

  8. Setoodeh AR, Afrahim S (2014) Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Compos Struct 116:128–135

    Article  Google Scholar 

  9. Reddy JN (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59(9):2382–2399

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Arbind A, Reddy JN (2013) Nonlinear analysis of functionally graded microstructure-dependent beams. Compos Struct 98:272–281

    Article  Google Scholar 

  11. Eltaher MA, Khairy A, Sadoun AM, Omar F-A (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283–295

    MathSciNet  Google Scholar 

  12. Eltaher MA, Emam SA, Mahmoud FF (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88

    Article  Google Scholar 

  13. Eltaher MA, Emam SA, Mahmoud FF (2012) Free vibration analysis functionally graded size-dependent nano-beams. Appl Math Comput 218:7406–7420

    MathSciNet  MATH  Google Scholar 

  14. Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nano-beams. Compos Struct 99:193–201

    Article  Google Scholar 

  15. Eltaher MA, Abdelrahman AA, Al-Nabawy A, Khater M, Mansour A (2014) Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position. Appl Math Comput 235:512–529

    MathSciNet  MATH  Google Scholar 

  16. Rahmani O, Pedram O (2014) Analysis and modeling the size effect on vibration of functionally graded nano-beams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55–70

    Article  Google Scholar 

  17. Ebrahimi F, Salari E (2015) Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method. Composites B 79:156–169

  18. Uymaz B (2013) Forced vibration analysis of functionally graded beams using nonlocal elasticity. Compos Struct 105:227–239

    Article  Google Scholar 

  19. Nazemnezhad R, Hosseini-Hashemi Sh (2014) Nonlocal nonlinear free vibration of functionally graded nano-beams. Compos Struct 110:192–199

    Article  Google Scholar 

  20. Niknam H, Aghdam MM (2015) A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos Struct 119:452–462

    Article  Google Scholar 

  21. Ziaee S (2015) Small scale effect on linear vibration of buckled size-dependent FG nanobeam. Ain Shams Eng J 6:587–598

    Article  Google Scholar 

  22. Ebrahimi F, Salari E (2015) Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos Struct 128:363–380

    Article  Google Scholar 

  23. Ebrahimi F, Salari E (2015) Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Composites B 78:272–290

    Article  Google Scholar 

  24. Ebrahimi F, Salari E (2015) Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment. Acta Astron 113:29–50

    Article  Google Scholar 

  25. Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 9:195404

    Article  ADS  Google Scholar 

  26. Hu Y-G, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and doublewalled carbon nanotubes. J Mech Phys Solids 56:3475–3485

    Article  ADS  MATH  Google Scholar 

  27. Khademolhosseini F, Rajapakse RKND, Nojeh A (2010) Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Compos Mater Sci 48:736–742

    Article  Google Scholar 

  28. Ansari R, Sahmani S, Rouhi H (2011) Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys Lett A 375:1255–1263

    Article  ADS  Google Scholar 

  29. Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101:024305

    Article  ADS  Google Scholar 

  30. Ansari R, Sahmani S, Arash B (2010) Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys Lett A 375:53–62

    Article  ADS  Google Scholar 

  31. Shen L, Shen H-S, Zhang C-L (2010) Anonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput Mater Sci 48:680–685

    Article  Google Scholar 

  32. Ansari R, Sahmani S (2013) Prediction of biaxial buckling of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl Math Model 37:7338–7351

    Article  MathSciNet  Google Scholar 

  33. Miandoab EM, Pishkenari HN, Yousefi-Koma A, Hoorzad H (2014) Polysiliconnano-beam model based on modified couple stress and Eringen’snonlocal elasticity theories. Physica E 63:223–228

    Article  ADS  Google Scholar 

  34. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305–312

    Article  Google Scholar 

  35. Shen H-S, Xu Y-M, Zhang C-L (2013) Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput Method Appl Mech Eng 267:458–470

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E 42:1727–1735

    Article  Google Scholar 

  37. Ke LL, Xiang Y, Yang J, Kitipornchai S (2009) Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput Mater Sci 47:409–417

    Article  Google Scholar 

  38. Karaoglu P, Aydogdu M (2010) On the forced vibration of carbon nanotubes via a non-local Euler–Bernoulli beam model. J Mech Eng Sci 224(2):497–503

    Article  Google Scholar 

  39. Sudak LJ (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 9:7281

    Article  ADS  Google Scholar 

  40. Aydogdu M (2009) A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E 41:1651–1655

    Article  ADS  Google Scholar 

  41. Nayfeh AH, Emam SA (2008) Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn 54:395–408

    Article  MathSciNet  MATH  Google Scholar 

  42. Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support of Yasouj University under grant Gryu-89111109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ziaee.

Appendices

Appendix 1

The equations of motion of a simply supported FG nanobeam with length L, width b, and thickness h and immovable ends can be derived using Hamilton’s principle. In this study, based on previous research [19, 21], it is assumed that the in-plane inertia and rotary inertia are negligible:

$$\begin{aligned}&\frac{\partial \hat{{N}}}{\partial x}=0, \end{aligned}$$
(33)
$$\begin{aligned}&F-\overline{{k}}W-\overline{{c}}\frac{\partial W}{\partial t}-\frac{\partial ^{2}\hat{{M}}}{\partial x^{2}}+\hat{{N}}\frac{\partial ^{2}W}{\partial x^{2}}=\left( {\int \limits _{A_0 } {\rho \left( z \right) \mathrm{d}A_0 } } \right) \frac{\partial ^{2}W}{\partial t^{2}}, \end{aligned}$$
(34)

where \(W=W(x,t)\) is the transverse displacement of any point on the geometric midplane of the FG nanobeam element, \(\rho (z)\) is the mass density, which is functionally graded in the thickness direction, \(\hat{{N}}\) is the axial normal force, \(\hat{{M}}\) is the bending moment, \(\overline{{k}}\) is the stiffness of the foundation, \(\overline{{c}}\) is the damping coefficient of the foundation, and \(F=F\left( x \right) \cos \left( {\Omega t} \right) \) is the transverse loading. \(A_0\) denotes the area of the FG nanobeam cross section.

According to the Euler–Bernoulli hypothesis and von Karman type geometrical nonlinearity, the strain displacement relationship is as follows [19, 21]:

$$\begin{aligned} \varepsilon _x =\frac{\partial u_1 }{\partial x}+\frac{1}{2}\left( {\frac{\partial W}{\partial x}} \right) ^{2}, \end{aligned}$$
(35)

where \(u_{1}\) is the total displacement along the x-direction given by Eq. (36):

$$\begin{aligned} u_1 \left( {x,z,t} \right) =u_0 \left( {x,t} \right) -\left( {z-z_0 } \right) \frac{\partial W}{\partial x}, \end{aligned}$$
(36)

where \(u_0 \left( {x,t} \right) \) is an axial displacement of any point on the geometric midplane of the FG nanobeam element, and \(z_{0}\) is the distance between the neutral surface and the geometric midplane of the FG nanobeam (Fig. 8) [14].

Fig. 8
figure 8

Cross section of functionally graded beam showing distance of neutral surface from geometric midplane

According to the physical concept of a neutral surface, \(z_{0}\) can be written as follows [14] (details can be found in Ref. [14]):

$$\begin{aligned} z_0 ={\int \limits _{A_0 } {zE\left( z \right) \mathrm{d}A_0 } }\Big /{\int \limits _{A_0 } {E\left( z \right) \mathrm{d}A_0 } }. \end{aligned}$$
(37)

Based on Eringen’s nonlocal elasticity, the stress–strain relationship is

$$\begin{aligned} \sigma _x -\left( {e_0 a} \right) ^{2}\nabla ^{2}\sigma _x =E\varepsilon _x , \end{aligned}$$
(38)

where \(\hbox {e}_{0}\hbox {a}\) is a material length scale parameter that contains a material constant and internal characteristic length. On the other hand, the resultant axial force and resultant bending moment are (\(\hat{{N}}\) and \( \hat{{M}}\))

$$\begin{aligned} \hat{{N}}=\int \limits _{A_0 } {\sigma _x \mathrm{d}A_0 } , \hat{{M}}=-\int \limits _{A_0 } {\sigma _x } \left( {z-z_0 } \right) \mathrm{d}A_0. \end{aligned}$$
(39)

The stress resultants on a beam element can be obtained by substituting Eqs. (35) and (38) into Eq. (39):

$$\begin{aligned}&\hat{{N}}-\left( {e_0 a} \right) ^{2}\nabla ^{2}\hat{{N}}=\left( {\int _{A_0 } {E\left( z \right) \mathrm{d}A_0 } } \right) \left[ {\frac{\partial u}{\partial x}+\frac{1}{2}\left( {\frac{\partial W}{\partial x}} \right) ^{2}} \right] , \end{aligned}$$
(40a)
$$\begin{aligned}&\hat{{M}}-\left( {e_0 a} \right) ^{2}\nabla ^{2}\hat{{M}}=\left( {\int _{A_0 } {\left( {z-z_0 } \right) ^{2}E\left( z \right) \mathrm{d}A_0 } } \right) \frac{\partial ^{2}W}{\partial x^{2}}, \end{aligned}$$
(40b)

where E(z) and \(\rho (z)\) defined by Eq. (41) are the Young’s modulus and specific mass density of the FG beam material, respectively.

$$\begin{aligned}&E\left( z \right) =E_1 +\left( {E_2 -E_1 } \right) \left( {\frac{2z+h}{2h}} \right) ^{\overline{{n}}}, \end{aligned}$$
(41a)
$$\begin{aligned}&\rho \left( z \right) =\rho _1 +\left( {\rho _2 -\rho _1 } \right) \left( {\frac{2z+h}{2h}} \right) ^{\overline{{n}}} , \end{aligned}$$
(41b)

where \(\hbox {E}_{i}\) and \(\rho _{i}\) (i \(=\) 1, 2) are the Young’s modulus and the specific mass density of the two materials used in the construction of the FG beam, respectively.

The partial differential equation of the transverse motion of FG nanobeams can be derived by combining Eq. (40b) and Eq. (34) and making some simplifications:

$$\begin{aligned} \left( {e_0 a} \right) ^{2}H+\hat{{N}}\frac{\partial ^{2}W}{\partial x^{2}}-\overline{{k}}W-\overline{{c}}\frac{\partial W}{\partial t}+F\left( {x,t} \right) =\left( {\int \limits _{A_0 } {\left( {z-z_0 } \right) ^{2}E\left( z \right) \mathrm{d}A_0 } } \right) \frac{\partial ^{4}W}{\partial x^{4}}+\left( {\int \limits _{A_0 } {\rho \left( z \right) \mathrm{d}A_0 } } \right) \frac{\partial ^{2}W}{\partial t^{2}},\nonumber \\ \end{aligned}$$
(42)

where H is defined by Eq. (43):

$$\begin{aligned} H=\overline{{c}}\frac{\partial ^{3}W}{\partial x^{2}\partial t}+\overline{{k}}\frac{\partial ^{2}W}{\partial x^{2}}-\frac{\partial ^{2}F}{\partial x^{2}}-\hat{{N}}\frac{\partial ^{4}W}{\partial x^{4}}+\left( {\int \limits _{A_0 } {\rho \left( z \right) \mathrm{d}A_0 } } \right) \frac{\partial ^{4}W}{\partial x^{2}\partial t^{2}}. \end{aligned}$$
(43)

On the basis of Eq. (33), one can conclude that \(\nabla ^{2}\hat{{N}}\) is zero. Therefore, Eq. (40a) is simplified to the relationship between the axial force \( \hat{{N}}\) and displacement components of the midplane of the FG beam (W and \(u_{0}\)) as follows [19, 21]:

$$\begin{aligned} \hat{{N}}=\left( {\int \limits _{A_0 } {E\left( z \right) \mathrm{d}A_0 } } \right) \left[ {\frac{\partial u_0 }{\partial x}+\frac{1}{2}\left( {\frac{\partial W}{\partial x}} \right) ^{2}} \right] . \end{aligned}$$
(44a)

Integrating Eq. (44a) yields [19, 21]

$$\begin{aligned} \int \limits _0^L {\hat{{N}}\mathrm{d}x} =\int \limits _0^L {\left( {\left( {\int \limits _{A_0 } {E\left( z \right) \mathrm{d}A_0 } } \right) \left[ {\frac{\partial u_0 }{\partial x}+\frac{1}{2}\left( {\frac{\partial W}{\partial x}} \right) ^{2}} \right] } \right) } \mathrm{d}x \end{aligned}$$
(45a)

or

$$\begin{aligned} \hat{{N}}L=\left( {\int \limits _{A_0 } {E\left( z \right) \mathrm{d}A_0 } } \right) \left[ {u_0 \left( L \right) -u_0 \left( 0 \right) +\int \limits _0^L {\frac{1}{2}\left( {\frac{\partial W}{\partial x}} \right) ^{2}\mathrm{d}x} } \right] . \end{aligned}$$
(45b)

The boundary values of the axial displacement of nanobeams are [19, 21]

$$\begin{aligned} u_0 \left( 0 \right) =0 ,\quad u_0 \left( L \right) =0. \end{aligned}$$
(46)

The relationship between the axial force \( \hat{{N}}\) and the transverse displacement of the midplane of nanobeams can be obtained by substituting for boundary conditions from Eq. (46) into Eq. (45b):

$$\begin{aligned} \hat{{N}}=+\frac{1}{2L}\left( {\int \limits _{A_0 } {E\left( z \right) } \mathrm{d}A_0 } \right) \int \limits _0^L {\left( {\frac{\partial W}{\partial x}} \right) ^{2}\mathrm{d}x}. \end{aligned}$$
(47)

Substituting the \( \hat{{N}}\) from Eq. (47) into Eqs. (42) and (43), one can obtain the governing equation of the nonlinear forced lateral vibration of FG nanobeams as follows:

$$\begin{aligned} \left( {e_0 a} \right) ^{2}H+\hat{{N}}\frac{\partial ^{2}W}{\partial x^{2}}-\overline{{k}}W-\overline{{c}}\frac{\partial W}{\partial t}+F\left( {x,t} \right) =\left( {\int \limits _{A_0 } {\left( {z-z_0 } \right) ^{2}E\left( z \right) \mathrm{d}A_0 } } \right) \frac{\partial ^{4}W}{\partial x^{4}}+\left( {\int \limits _{A_0 } {\rho \left( z \right) \mathrm{d}A_0 } } \right) \frac{\partial ^{2}W}{\partial t^{2}},\nonumber \\ \end{aligned}$$
(48)

where H is defined by Eq. (49):

$$\begin{aligned} H=\overline{{c}}\frac{\partial ^{3}W}{\partial x^{2}\partial t}+\overline{{k}}\frac{\partial ^{2}W}{\partial x^{2}}-\frac{\partial ^{2}F}{\partial x^{2}}-\hat{{N}}\frac{\partial ^{4}W}{\partial x^{4}}+\left( {\int \limits _{A_0 } {\rho \left( z \right) \mathrm{d}A_0 } } \right) \frac{\partial ^{4}W}{\partial x^{2}\partial t^{2}}, \end{aligned}$$
(49)

and \(\hat{{N}}\) is

$$\begin{aligned} \hat{{N}}=+\frac{1}{2L}\left( {\int \limits _{A_0 } {E\left( z \right) } \mathrm{d}A_0 } \right) \int \limits _0^L {\left( {\frac{\partial W}{\partial x}} \right) ^{2}\mathrm{d}x} . \end{aligned}$$
(50)

The following dimensionless variables are used to simplify the parametric studies:

$$\begin{aligned} \overline{{x}}= & {} \frac{x}{L},\quad \overline{{W}}=\frac{W}{r},\quad \overline{{t}}=t\sqrt{D/{\rho _e L^{4}}}, \nonumber \\ D= & {} b\int \limits _{-\frac{h}{2}}^{\frac{h}{2}} {\left( {z-z_0 } \right) ^{2}E\left( z \right) \mathrm{d}z, \rho _e =b\int \limits _{-\frac{h}{2}}^{\frac{h}{2}} {\rho \left( z \right) \mathrm{d}z} } , A=b\int \limits _{-\frac{h}{2}}^{\frac{h}{2}} {E\left( z \right) \mathrm{d}z} , r=\sqrt{{bh^{3}}/{12(bh)}}. \end{aligned}$$
(51)

Then, the governing partial deferential equation of motion changes to

$$\begin{aligned}&-\frac{L^{4}\left( {e_0 a} \right) ^{2}}{rD}\overline{{H}}+\frac{\partial ^{2}\overline{{W}}}{\partial \overline{{t}}^{2}}+\frac{\partial ^{4}\overline{{W}}}{\partial \overline{{x}}^{4}}+\frac{\overline{{k}}L^{4}}{D}\overline{{W}}+\frac{\overline{{c}}L^{2}}{\sqrt{D\rho _e }}\frac{\partial \overline{{W}}}{\partial \overline{{t}}} -\left( {\frac{Ar^{2}}{2D}\int \limits _0^1 {\left( {\frac{\partial \overline{{W}}}{\partial \overline{{x}}}} \right) ^{2}\mathrm{d}\overline{{x}}} } \right) \frac{\partial ^{2}\overline{{W}}}{\partial \overline{{x}}^{2}}=F\frac{L^{4}}{rD}, \end{aligned}$$
(52)

where

$$\begin{aligned} \overline{{H}}= & {} -\frac{1}{L^{2}}\frac{\partial ^{2}F}{\partial \overline{{x}}^{2}}+\frac{\overline{{k}}r}{L^{2}}\frac{\partial ^{2}\overline{{W}}}{\partial \overline{{x}}^{2}}+\frac{\overline{{c}}r}{L^{2}}\sqrt{\frac{D}{\rho _e L^{4}}}-\left[ {\frac{Ar^{3}}{2L^{6}}\int \limits _0^1 {\left( {\frac{\partial \overline{{W}}}{\partial \overline{{x}}}} \right) ^{2}\mathrm{d}\overline{{x}}} } \right] \frac{\partial ^{4}\overline{{W}}}{\partial \overline{{x}}^{4}} + \frac{Dr}{L^{6}}\frac{\partial ^{4}\overline{{W}}}{\partial \overline{{x}}^{2}\partial \overline{{t}}^{2}}. \end{aligned}$$
(53)

Appendix 2

According to Eq. (10), it can be found that the secular terms are eliminated from \(q_{11} \), \(q_{k1}\), and \(q_{n1} (n\ne 1,k)\) if

$$\begin{aligned}&2i\overline{{\omega }}_1 \left( {{A}'_1 +\hat{{C}}_1 A_1 } \right) +2a_1 A_1 \sum _{m=1}^N {m^{2}\left( {A_m \overline{{A}}_m +\Lambda _m^2 } \right) } +3a_1 \overline{{A}}_1^2 \Lambda _1 \exp \left( {i\sigma T_2 } \right) +4a_1 \Lambda _1^2 A_1 +a_1 \overline{{A}}_1 A_1^2 =0, \end{aligned}$$
(54)
$$\begin{aligned}&2i\overline{{\omega }}_k \left( {{A}'_k +\hat{{C}}_k A_k } \right) +2a_k A_k \sum _{m=1}^N {m^{2}\left( {A_m \overline{{A}}_m +\Lambda _m^2 } \right) } +3a_1 \overline{{A}}_1^2 \Lambda _1 \exp \left( {i\sigma T_2 } \right) +4a_k k^{2}\Lambda _k^2 A_k +k^{2}a_k \overline{{A}}_k A_k^2 \nonumber \\&\qquad +\,3a_k \Lambda _k \exp \left( {i\sigma _1 T_2 } \right) \sum _{m=1}^N {m^{2}\Lambda _m^2 } =0, \end{aligned}$$
(55)
$$\begin{aligned}&2i\overline{{\omega }}_n \left( {{A}'_n +\hat{{C}}_n A_n } \right) +2a_n A_n \sum _{m=1}^N {m^{2}\left( {A_m \overline{{A}}_m +\Lambda _m^2 } \right) } +4a_n n^{2}\Lambda _n^2 A_n +n^{2}a_n \overline{{A}}_n A_n^2 =0. \end{aligned}$$
(56)

Let

$$\begin{aligned} A_m =\frac{1}{2}\alpha _m \exp (i\beta _m ), \end{aligned}$$
(57)

where \(\alpha _m \left( {T_2 } \right) \) and \(\beta _m \left( {T_2 } \right) \) are both real. Substituting Eq. (57) into Eq. (54), Eq. (55), and Eq. (56) and separating the result into real and imaginary parts, one obtains

$$\begin{aligned}&{\alpha }'_1 +\hat{{C}}_1 \alpha _1 +\frac{3}{4}\frac{a_1 \Lambda _1 \alpha _1^2 }{\overline{{\omega }}_1 }\sin \gamma _1 =0, \end{aligned}$$
(58)
$$\begin{aligned}&-\alpha _1 {\beta }'_1 +a_1 \alpha _1 \sum _{m=2}^N {m^{2}\left( {\frac{\alpha _m^2 }{4}+\Lambda _m^2 } \right) } +\frac{3}{4}a_1 \alpha _1^2 \Lambda _1 \cos \left( {\sigma T_2 -3\beta _1 } \right) +3a_1 \Lambda _1^2 \alpha _1 +\frac{3}{8}a_1 \alpha _1^3 =0, \end{aligned}$$
(59)
$$\begin{aligned}&{\alpha }'_k \overline{{\omega }}_k +\hat{{C}}_k \alpha _k \overline{{\omega }}_k +3a_k \Lambda _k \sum _{m=1}^N {m^{2}\Lambda _m^2 \sin \gamma _2 } =0, \end{aligned}$$
(60)
$$\begin{aligned}&-\alpha _k {\beta }'_k \overline{{\omega }}_k +3a_k \Lambda _k \sum _{m=1}^N {m^{2}\Lambda _m^2 \cos \gamma _2 +a_k \alpha _k \sum _{m=1}^N {m^{2}\left( {\frac{\alpha _m^2 }{4}+\Lambda _m } \right) } +2k^{2}a_k \Lambda _k^2 \alpha _k +\frac{k^{2}}{8}a_k \alpha _k^3 } =0, \end{aligned}$$
(61)
$$\begin{aligned}&\overline{{\omega }}_n \left( {{\alpha }'_n +\hat{{C}}_n \alpha _n } \right) =0, \end{aligned}$$
(62)
$$\begin{aligned}&-\overline{{\omega }}_n \alpha _n {\beta }'_n +a_n \alpha _n \sum _{m=1}^N {\frac{m^{2}}{4}\left( {\alpha _m^2 +4\Lambda _m^2 } \right) } +2a_n n^{2}\Lambda _n^2 \alpha _n +\frac{1}{8}n^{2}a_n \alpha _n^3 =0, \end{aligned}$$
(63)

where \(\sigma T_2 -3\beta _1 =\gamma _1 \), \(\sigma _1 T_2 -\beta _k =\gamma _2\), and \(\left( \right) ^{\prime }={d}/{dT_2 }\).

The solution of Eq. (62) shows that

$$\begin{aligned} \alpha _n \propto \exp (-\hat{{C}}_n T_2 ). \end{aligned}$$
(64)

Equation (64) clearly reveals that all \(\alpha _n (n\ne 1,k)\) decay. Hence, the steady-state motion (\({\alpha }'_1 =0,{\alpha }'_k =0,{\gamma }'_1 =0,{\gamma }'_k =0)\) can be expressed as

$$\begin{aligned}&\hat{{C}}_1 \alpha _1 \overline{{\omega }}_1 +\frac{3}{4}a_1 \Lambda _1 \alpha _1^2 \sin \gamma _1 =0, \end{aligned}$$
(65)
$$\begin{aligned}&-\frac{1}{3}\sigma \alpha _1 \overline{{\omega }}_1 +a_1 \alpha _1 \sum _{m=2}^N {m^{2}\Lambda _m^2 } +\frac{3}{4}a_1 \alpha _1^2 \Lambda _1 \cos \left( {\gamma _1 } \right) +\frac{k^{2}}{4}\alpha _1 a_1 \alpha _k^2 +3a_1 \Lambda _1^2 \alpha _1 +\frac{3}{8}a_1 \alpha _1^3 =0, \end{aligned}$$
(66)
$$\begin{aligned}&\hat{{C}}_k \alpha _k \overline{{\omega }}_k +a_k \Lambda _k \sum _{m=1}^N {m^{2}\Lambda _m^2 \sin \gamma _2 } =0, \end{aligned}$$
(67)
$$\begin{aligned}&-\alpha _k \sigma _1 \overline{{\omega }}_k +a_k \Lambda _k \sum _{m=1}^N {m^{2}\Lambda _m^2 \cos \gamma _2 +\frac{3}{8}a_k k^{2}\alpha _k^3 +\frac{1}{4}a_k \alpha _k \alpha _1^2 +a_k \alpha _k \sum _{m=1}^N {m^{2}\Lambda _m^2 } +2k^{2}a_k \Lambda _k^2 \alpha _k } =0. \end{aligned}$$
(68)

Combining Eq. (65) with Eq. (66) leads to

$$\begin{aligned} \left( \frac{3}{4}a_1 {\Lambda }_1 {\alpha }_1^2 \right) ^{2}=\left( {-\frac{1}{3}\sigma \alpha _1 \overline{{\omega }}_1 +a_1 \alpha _1 \sum _{m=2}^N {m^{2}{\Lambda }_m^2 } +\frac{k^{2}}{4}\alpha _1 a_1 \alpha _k^2 +3a_1 \Lambda _1^2 \alpha _1 +\frac{3}{8}a_1 \alpha _1^3 } \right) ^{2}+\left( {\hat{{C}}_1 \alpha _1 \overline{{\omega }}_1 } \right) ^{2}. \end{aligned}$$
(69)

Eliminating \(\gamma _2\) from Eq. (67) and Eq. (68) yields

$$\begin{aligned}&\left( {a_k \Lambda _k \sum _{m=1}^N {m^{2}\Lambda _m^2 } } \right) ^{2}\!=\!\left( {-\alpha _k \sigma _1 \overline{{\omega }}_k +\frac{3}{8}a_k k^{2}\alpha _k^3 +\frac{1}{4}a_k \alpha _k \alpha _1^2 +a_k \alpha _k \sum _{m=1}^N {m^{2}\Lambda _m^2 } +2k^{2}a_k \Lambda _k^2 \alpha _k } \right) ^{2}+\left( {\hat{{C}}_k \alpha _k \overline{{\omega }}_k } \right) ^{2}.\nonumber \\ \end{aligned}$$
(70)

According to Eqs. (69) and (70), these two solutions are possible: either \(\alpha _1 =0\) and \(\alpha _k \ne 0\) or \(\alpha _1 \ne 0\) and \(\alpha _k \ne 0\).

The following equation expresses the time-dependent lateral deflection of a vibrating FG nanobeam:

$$\begin{aligned} \overline{{W}}\left( {\overline{{x}},\overline{{t}}} \right)= & {} \varepsilon \alpha _1 \cos \left( {\frac{1}{3}\overline{{\Omega }}\overline{{t}}-\frac{1}{3}\gamma _1 } \right) \sin \left( {\pi \overline{{x}}} \right) +\varepsilon \alpha _k \cos \left( {3\overline{{\Omega }}\overline{{t}}-\gamma _2 } \right) \sin \left( {k\pi \overline{{x}}} \right) \nonumber \\&+\,2\varepsilon \sum _{n=1}^N {\Lambda _n \cos \left( \, {\overline{{\Omega }}\overline{{t}}} \right) } \sin \left( {n\pi \overline{{x}}} \right) +O\big ( {\varepsilon ^{3}} \big ). \end{aligned}$$
(71)

Appendix 3

It can be found that Eqs. (58)–(63) govern the conditions in which secular terms are eliminated from \(q_{11},q_{k1}\) and \(q_{n1}(n\ne 1,k,p,q)\).

The following equations must be satisfied to eliminate the secular terms from \(q_{p1}\) and \(q_{q1} \):

$$\begin{aligned}&2i\overline{{\omega }}_p \left( {{A}'_p +\hat{{C}}_p A_p } \right) +2a_p A_p \sum _{m=1}^N {m^{2}\left( {A_m \overline{{A}}_m +\Lambda _m^2 } \right) } +4a_p p^{2}\Lambda _p^2 A_p +p^{2}a_p \overline{{A}}_p A_p^2 \nonumber \\&\quad +\,2a_p \Lambda _q \Lambda _p \overline{{A}}_q \exp \left( {\sigma _2 T_2 } \right) =0, \end{aligned}$$
(72)
$$\begin{aligned}&2i\overline{{\omega }}_q \left( {{A}'_q +\hat{{C}}_q A_q } \right) +2a_q A_q \sum _{m=1}^N {m^{2}\left( {A_m \overline{{A}}_m +\Lambda _m^2 } \right) } +4a_q q^{2}\Lambda _q^2 A_q +q^{2}a_q \overline{{A}}_q A_q^2 \nonumber \\&\quad +\,2a_q \Lambda _q \Lambda _p \overline{{A}}_p \exp \left( {\sigma _2 T_2 } \right) =0. \end{aligned}$$
(73)

The following equations can be found by introducing the polar notation represented by Eq. (57):

$$\begin{aligned}&\overline{{\omega }}_p \left( {{\alpha }'_p +\hat{{C}}_p \alpha _p } \right) +a_p \Lambda _p \Lambda _q \alpha _q \sin \left( {\gamma _3 } \right) =0, \end{aligned}$$
(74)
$$\begin{aligned}&\quad -\,\overline{{\omega }}_p \alpha _p {\beta }'_p +a_p \alpha _p \sum _{m=1}^N {\frac{m^{2}}{4}\left( {\alpha _m^2 +4\Lambda _m^2 } \right) } +2a_p p^{2}\Lambda _p^2 \alpha _p +\frac{1}{8}p^{2}a_p \alpha _p^3 +a_p \Lambda _p \Lambda { }_q\alpha _q \cos \left( {\gamma _3 } \right) =0, \end{aligned}$$
(75)
$$\begin{aligned}&\overline{{\omega }}_q \left( {{\alpha }'_q +\hat{{C}}_q \alpha _q } \right) +a_q \Lambda _q \Lambda _p \alpha _p \sin \left( {\gamma _3 } \right) =0, \end{aligned}$$
(76)
$$\begin{aligned}&\quad -\,\overline{{\omega }}_q \alpha _q {\beta }'_q +a_q \alpha _q \sum _{m=1}^N {\frac{m^{2}}{4}\left( {\alpha _m^2 +4\Lambda _m^2 } \right) } +2a_q q^{2}\Lambda _q^2 \alpha _q +\frac{1}{8}q^{2}a_q \alpha _q^3 +a_q \Lambda _q \Lambda { }_p\alpha _p \cos \left( {\gamma _3 } \right) =0, \end{aligned}$$
(77)

in which \(\gamma _3 =\sigma _2 T_2 -\beta _p -\beta _q \).

As mentioned earlier, except for \(\alpha _1 , \alpha _k , \alpha _p\) and \(\alpha _q \), the remaining \(\alpha _n \left( {n\ne 1,k,p,q} \right) \) decay with time. Thus, the following equations govern the steady-state response of FG nanobeams:

$$\begin{aligned}&\overline{{\omega }}_p \hat{{C}}_p \alpha _p +a_p \Lambda _p \Lambda _q \alpha _q \sin \left( {\gamma _3 } \right) =0, \end{aligned}$$
(78)
$$\begin{aligned}&\overline{{\omega }}_q \hat{{C}}_q \alpha _q +a_q \Lambda _q \Lambda _p \alpha _p \sin \left( {\gamma _3 } \right) =0, \end{aligned}$$
(79)
$$\begin{aligned}&\sigma _2 ={\beta }'_p +{\beta }'_q , \end{aligned}$$
(80)
$$\begin{aligned} {\beta }'_p= & {} \frac{1}{\overline{{\omega }}_p \alpha _p }\left( {a_p \alpha _p \sum _{m=1}^N {m^{2}\Lambda _m^2 \frac{m^{2}}{4}+} \frac{q^{2}}{4}a_p \alpha _p \alpha _q^2 +\frac{1}{4}a_p \alpha _p \alpha _1^2 +\frac{k^{2}}{4}a_p \alpha _p \alpha _k^2 +2a_p p^{2}\Lambda _p^2 \alpha _p } \right) \nonumber \\&+\,\frac{1}{\overline{{\omega }}_p \alpha _p }\left( {\frac{3}{8}p^{2}a_p \alpha _p^3 +a_p \Lambda _p \Lambda { }_q\alpha _q \cos \left( {\gamma _3 } \right) } \right) , \end{aligned}$$
(81)
$$\begin{aligned} {\beta }'_q= & {} \frac{1}{\overline{{\omega }}_q \alpha _q }\left( {a_q \alpha _q \sum _{m=1}^N {m^{2}\Lambda _m^2 \frac{m^{2}}{4}+} \frac{p^{2}}{4}a_q \alpha _q \alpha _p^2 +\frac{1}{4}a_q \alpha _q \alpha _1^2 +\frac{k^{2}}{4}a_q \alpha _q \alpha _k^2 +2q^{2}a_q \Lambda _q^2 \alpha _q } \right) \nonumber \\&+\,\frac{1}{\overline{{\omega }}_q \alpha _q }\left( {\frac{3}{8}q^{2}a_q \alpha _q^3 +a_q \Lambda _q \Lambda { }_p\alpha _p \cos \left( {\gamma _3 } \right) } \right) , \end{aligned}$$
(82)
$$\begin{aligned}&\hat{{C}}_1 \alpha _1 \overline{{\omega }}_1 +\frac{3}{4}a_1 \Lambda _1 \alpha _1^2 \sin \gamma _1 =0, \end{aligned}$$
(83)
$$\begin{aligned}&\quad -\,\frac{1}{3}\sigma \alpha _1 \overline{{\omega }}_1 +a_1 \alpha _1 \sum _{m=2}^N {m^{2}\Lambda _m^2 } +\frac{3}{4}a_1 \alpha _1^2 \Lambda _1 \cos \left( {\gamma _1 } \right) +\frac{k^{2}}{4}\alpha _1 a_1 \alpha _k^2 +3a_1 \Lambda _1^2 \alpha _1 +\frac{3}{8}a_1 \alpha _1^3 \nonumber \\&\quad +\,\frac{3}{4}p^{2}\alpha _1 a_1 \alpha _p^2 +\frac{3}{4}q^{2}\alpha _1 a_1 \alpha _q^2 =0, \end{aligned}$$
(84)
$$\begin{aligned}&\hat{{C}}_k \alpha _k \overline{{\omega }}_k +a_k \Lambda _k \sum _{m=1}^N {m^{2}\Lambda _m^2 \sin \gamma _2 } =0, \end{aligned}$$
(85)
$$\begin{aligned}&\quad -\,\alpha _k \sigma _1 \overline{{\omega }}_k +a_k \Lambda _k \sum _{m=1}^N {m^{2}\Lambda _m^2 \cos \gamma _2 +\frac{3}{8}a_k k^{2}\alpha _k^3 +\frac{1}{4}a_k \alpha _k \alpha _1^2 +a_k \alpha _k \sum _{m=1}^N {m^{2}\Lambda _m^2 } +2k^{2}a_k \Lambda _k^2 \alpha _k } \nonumber \\&\quad +\,\frac{p^{2}}{4}\alpha _k a_k \alpha _p^2 +\frac{q^{2}}{4}\alpha _k a_k \alpha _q^2 =0. \end{aligned}$$
(86)

According to Eqs. (78), (79), and (83), the possible solutions are

  1. (a)

    \(\alpha _1 =\alpha _p =\alpha _q =0\), and \(\alpha _k \ne 0\).

  2. (b)

    \(\alpha _1 \ne 0\), and \(\alpha _k \ne 0\), but \(\alpha _p =\alpha _q =0\).

  3. (c)

    \(\alpha _1 =0\), and \(\alpha _k \ne 0\), \(\alpha _p \ne 0\), and \(\alpha _q \ne 0\).

  4. (d)

    \(\alpha _1 \ne 0\), \(\alpha _k \ne 0\),\(\alpha _p \ne 0\), and \(\alpha _q \ne 0\).

The lateral deflection of vibrating FG nanobeams can be represented by the following equation:

$$\begin{aligned} \overline{{W}}\left( {\overline{{x}},\overline{{t}}} \right)&=\varepsilon \alpha _1 \cos \left( {\frac{1}{3}\overline{{\Omega }}\overline{{t}}-\frac{1}{3}\gamma _1 } \right) \sin \left( {\pi \overline{{x}}} \right) +\varepsilon \alpha _k \cos \left( {3\overline{{\Omega }}\overline{{t}}-\gamma _2 } \right) \sin \left( {k\pi \overline{{x}}} \right) +\varepsilon \alpha _p \cos \left( {\overline{{\omega }}_p \overline{{t}}+\beta _P } \right) \sin \left( {p\pi \overline{{x}}} \right) \nonumber \\&\quad +\,\varepsilon \alpha _q \cos \left( {\overline{{\omega }}_q \overline{{t}}+\beta _q } \right) \sin \left( {q\pi \overline{{x}}} \right) +2\varepsilon \sum _{n=1}^N {\Lambda _n \cos \left( {\overline{{\Omega }}\overline{{t}}} \right) } \sin \left( {n\pi \overline{{x}}} \right) +O\big ( {\varepsilon ^{3}} \big ). \end{aligned}$$
(87)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaee, S. The steady-state response of size-dependent functionally graded nanobeams to subharmonic excitation. J Eng Math 104, 19–39 (2017). https://doi.org/10.1007/s10665-016-9870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-016-9870-x

Keywords

Navigation