Skip to main content
Log in

From individual behaviour to an evaluation of the collective evolution of crowds along footbridges

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper proposes a crowd dynamic macroscopic model grounded on microscopic phenomenological observations which are upscaled by means of a formal mathematical procedure. The actual applicability of the model to real-world problems is tested by considering the pedestrian traffic along footbridges, of interest for Structural and Transportation Engineering. The genuinely macroscopic quantitative description of the crowd flow directly matches the engineering need of bulk results. However, three issues beyond the sole modelling are of primary importance: the pedestrian inflow conditions, the numerical approximation of the equations for non trivial footbridge geometries and the calibration of the free parameters of the model on the basis of in situ measurements currently available. These issues are discussed, and a solution strategy is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Throughout the paper, the subscript t is used to denote a dependence on time (hence, in particular, not a time derivative).

  2. Notice that intersections of rectangles taken from orthogonal grids, instead, give rise just to rectangular intersections.

References

  1. Cristiani E, Piccoli B, Tosin A (2014) Multiscale modeling of pedestrian dynamics. MS&A: modeling, simulation and applications, vol 12. Springer International Publishing, New York

  2. Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73(4):1067–1141

    Article  ADS  Google Scholar 

  3. Zajaca FE, Neptune RR, Kautz SA (2003) Biomechanics and muscle coordination of human walking: part ii: lessons from dynamical simulations and clinical implications. Gait Posture 17(1):1–17

    Article  Google Scholar 

  4. Warren WH (2006) The dynamics of perception and action. Psychol Rev 113(2):358–389

    Article  MathSciNet  Google Scholar 

  5. Xu ML, Jiang H, Jin XG, Deng Z (2014) Crowd simulation and its applications: recent advances. J Comput Sci Technol 29(5):799–811

    Article  Google Scholar 

  6. Gwynne S, Galea ER, Owen M, Lawrence PJ, Filippidis L (1999) A review of the methodologies used in the computer simulation of evacuation from the built environment. Build Environ 34(6):741–749

    Article  Google Scholar 

  7. Zheng X, Sun J, Zhong T (2010) Study on mechanics of crowd jam based on the cusp-catastrophe model. Saf Sci 48(10):1236–1241

    Article  Google Scholar 

  8. Duives DC, Daamen W, Hoogendoorn SP (2013) State-of-the-art crowd motion simulation models. Transp Res Part C 37(12):193–209

    Article  Google Scholar 

  9. Ingólfsson ET, Georgakis CT, Jonsson J (2012) Pedestrian-induced lateral vibrations of footbridges: a literature review. Eng Struct 45:21–52

    Article  Google Scholar 

  10. Živanović S, Pavic A, Reynolds P (2005) Vibration serviceability of footbridges under human-induced excitation: a literature review. J Sound Vib 279:1–74

    Article  ADS  Google Scholar 

  11. Ali S, Nishino K, Manocha D, Shah M (2013) Modeling, simulation and visual analysis of crowds: a multidisciplinary perspective. The international series in video computing, vol 11. Springer, Berlin

  12. Venuti F, Bruno L (2009) Crowd-structure interaction in lively footbridges under synchronous lateral excitation: a literature review. Phys Life Rev 6(3):176–206

    Article  ADS  Google Scholar 

  13. Agnelli JP, Colasuonno F, Knopoff D (2015) A kinetic theory approach to the dynamics of crowd evacuation from bounded domains. Math Models Methods Appl Sci 25(1):109–129

    Article  MathSciNet  MATH  Google Scholar 

  14. Degond P, Appert-Rolland C, Pettré J, Theraulaz G (2013) Vision-based macroscopic pedestrian models. Kinet Relat Models 6(4):809–839

    Article  MathSciNet  MATH  Google Scholar 

  15. Degond P, Appert-Rolland C, Moussaïd M, Pettré J, Theraulaz G (2013) A hierarchy of heuristic-based models of crowd dynamics. J Stat Phys 152(6):1033–1068

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Blue V, Adler J (1998) Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp Res Board 1644:29–36

    Article  Google Scholar 

  17. Helbing D, Molnár P (1995) Social force models for pedestrian dynamics. Phys Rev E 51(5):4282–4286

    Article  ADS  Google Scholar 

  18. Schadschneider A, Klingsch W, Klüpfel H, Kretz T, Rogsch C, Seyfried A (2011) Evacuation dynamics: empirical results, modeling and applications. In: Meyers RA (ed) Extreme environmental events. Springer, New York, pp 517–550

    Chapter  Google Scholar 

  19. Zheng X, Zhong T, Liu M (2009) Modeling crowd evacuation of a building based on seven methodological approaches. Build Environ 44(3):437–445

    Article  MathSciNet  Google Scholar 

  20. Carroll SP, Owen JS, Hussein MFM (2012) Modelling crowd-bridge dynamic interaction with a discretely defined crowd. J Sound Vib 331(11):2685–2709

    Article  ADS  Google Scholar 

  21. Haron F, Alginahi YM, Kabir MN, Mohamed AI (2012) Software evaluation for crowd evacuation—case study: Al-Masjid an-Nabawi. Int J Comput Sci Issues 9(2):128–134

    Google Scholar 

  22. Corbetta A, Muntean A, Vafayi K (2015) Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Math Biosci Eng 12:337–356

    MathSciNet  MATH  Google Scholar 

  23. Johansson A, Helbing D, Shukla PK (2007) Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv Complex Syst 10(supp02):271–288

    Article  MathSciNet  MATH  Google Scholar 

  24. Zanlungo F, Ikeda T, Kanda T (2011) Social force model with explicit collision prediction. Europhys Lett (EPL) 93(6):68005

    Article  ADS  Google Scholar 

  25. Hughes RL (2000) The flow of large crowds of pedestrians. Math Comput Simul 53:367–370

    Article  Google Scholar 

  26. Daamen W (2004) Modelling passenger flows in public transport facilities. PhD thesis, Department of Transport and Planning, Delft University of Technology

  27. Twarogowska M, Goatin P, Duvigneau R (2014) Comparative study of macroscopic pedestrian models. Transp Res Procedia 2:477–485

    Article  Google Scholar 

  28. Bruno L, Venuti F (2009) Crowd-structure interaction in footbridges: modelling, application to a real case-study and sensitivity analyses. J Sound Vib 323(323):475–493

    Article  ADS  Google Scholar 

  29. Venuti F, Bruno L (2013) Mitigation of human-induced lateral vibrations on footbridges through walkway shaping. Eng Struct 56:95–104

    Article  Google Scholar 

  30. Fruin JJ (1987) Pedestrian planning and design. Elevator World Inc., Mobile

    Google Scholar 

  31. Cristiani E, Piccoli B, Tosin A (2011) Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model Simul 9(1):155–182

    Article  MathSciNet  MATH  Google Scholar 

  32. Piccoli B, Tosin A (2009) Pedestrian flows in bounded domains with obstacles. Continuum Mech Thermodyn 21(2):85–107

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. AlGadhi SAH, Mahmassani H (1990) Modelling crowd behavior and movement: application to Makkah pilgrimage. Transp Traffic Theory 59–78:1990

    Google Scholar 

  34. AlGadhi SAH, Mahmassani HS (1991) Simulation of crowd behavior and movement: fundamental relations and application. Transp Res Rec 1320(1320):260–268

    Google Scholar 

  35. Colombo RM, Goatin P, Rosini MD (2011) On the modelling and management of traffic. ESAIM Math Model Numer Anal 45(05):853–872

    Article  MathSciNet  MATH  Google Scholar 

  36. Huang L, Wong S, Zhang M, Shu CW, Lam W (2009) Revisiting hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transp Res Part B 43:127–141

    Article  Google Scholar 

  37. Xia Y, Wong SC, Zhang M, Shu CW, Lam WHK (2008) An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow model. Int J Numer Methods Eng 76:337–350

    Article  MathSciNet  MATH  Google Scholar 

  38. Piccoli B, Tosin A (2011) Time-evolving measures and macroscopic modeling of pedestrian flow. Arch Ration Mech Anal 199(3):707–738

    Article  MathSciNet  MATH  Google Scholar 

  39. Lachapelle A, Wolfram MT (2011) On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp Res B 45(10):1572–1589

    Article  Google Scholar 

  40. Bruno L, Tosin A, Tricerri P, Venuti F (2011) Non-local first-order modelling of crowd dynamics: a multidimensional framework with applications. Appl Math Model 35(1):426–445

    Article  MathSciNet  MATH  Google Scholar 

  41. Hughes TJ, Marsden JE (1976) A short course in fluid mechanics. Publish or Perish, Boston

    MATH  Google Scholar 

  42. Piccoli B, Rossi F (2013) Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes. Acta Appl Math 124(1):73–105

    Article  MathSciNet  MATH  Google Scholar 

  43. Tosin A, Frasca P (2011) Existence and approximation of probability measure solutions to models of collective behaviors. Netw Heterog Media 6(3):561–596

    Article  MathSciNet  MATH  Google Scholar 

  44. Colombo RM, Garavello M, Lécureux-Mercier M (2012) A class of nonlocal models for pedestrian traffic. Math Models Methods Appl Sci 22(4):1150023 (34 pages)

    Article  MathSciNet  MATH  Google Scholar 

  45. Colombi A, Scianna M, Tosin A (2014) Differentiated cell behavior: a multiscale approach using measure theory. J Math Biol 71(5):1049–1079

    Article  MathSciNet  MATH  Google Scholar 

  46. Živanović S (2012) Benchmark footbridge for vibration serviceability assessment under vertical component of pedestrian load. ASCE J Struct Eng 138(10):1193–1202

    Article  Google Scholar 

  47. Dallard P, Fitzpatrick T, Flint A, Le Bourva S, Low A, Ridsdill Smith RM, Willford M (2001) The London millennium footbridge. Struct Eng 79(22):17–33

    Google Scholar 

  48. Fujino Y, Pacheco BM, Nakamura S, Warnitchai P (1993) Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge. Earthq Eng Struct Dyn 22(9):741–758

    Article  Google Scholar 

  49. Setareh M (2011) Study of verrazano-narrows bridge movements during a New York City marathon. J Bridge Eng 16(1):127–138

    Article  Google Scholar 

  50. Evers JHM, Fetecau RC, Ryzhik L (2014) Anisotropic interactions in a first-order aggregation model: a proof of concept. Nonlinearity 28(8):2847–2871

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Maury B, Roudneff-Chupin A, Santambrogio F (2010) A macroscopic crowd motion model of gradient flow type. Math Models Methods Appl Sci 20(10):1787–1821

    Article  MathSciNet  MATH  Google Scholar 

  52. Rimon E, Koditschek DE (1992) Exact robot navigation using artificial potential functions. IEEE Trans Robot Autom 8(5):501–518

    Article  Google Scholar 

  53. Connolly CI, Burns JB, Weiss R (1990) Path planning using Laplace’s equation. IEEE Int Conf Robot 3:2102–2106

    Google Scholar 

  54. Doob JL (2001) Classical potential theory and its probabilistic counterpart. Springer, Berlin

    Book  MATH  Google Scholar 

  55. Iñiguez P, Rosell J (2009) Path planning using sub- and super-harmonic functions. In: Proceedings of the 40th international symposium on robotics, Barcelona, Spain, March 2009, pp 319–324

  56. Russell L (2005) Footbridge awards 2005. Bridge Des Eng 11(41):35–49

    Google Scholar 

  57. Bögle A (2004) Footbridges. In: Schlaich J, Bergermann R (eds) Light structures. Prestel, New York, pp 232–267

    Google Scholar 

  58. Caetano E, Cunha A, Magalhaes F, Moutinho C (2010) Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 1: assessment of dynamic behaviour. Eng Struct 32(4):1069–1081

    Article  Google Scholar 

  59. Faure S, Maury B (2015) Crowd motion from the granular standpoint. Math Models Methods Appl Sci 25(3):463–493

    Article  MathSciNet  MATH  Google Scholar 

  60. Maury B, Roudneff-Chupin A, Santambrogio F (2011) Handling congestion in crowd motion modeling. Netw Heterog Media 6(3):485–519

    Article  MathSciNet  MATH  Google Scholar 

  61. Sampoli ML (2004) An automatic procedure to compute efficiently the intersection of two triangles. Technical report, University of Siena, Italy

  62. O’Rourke J (1994) Computational geometry in C. Cambridge University Press, New York

    MATH  Google Scholar 

  63. Toussaint GT (1983) Solving geometric problems with the rotating calipers. In: Proceedings of the IEEE Melecon, vol 83. p A10

  64. Vázquez JL, Vitillaro E (2008) Heat equation with dynamical boundary conditions of reactive type. Commun Partial Differ Equ 33(4):561–612

    Article  MathSciNet  MATH  Google Scholar 

  65. Vázquez JL, Vitillaro E (2009) On the Laplace equation with dynamical boundary conditions of reactive-diffusive type. J Math Anal Appl 354(2):674–688

    Article  MathSciNet  MATH  Google Scholar 

  66. Colli P, Fukao T (2015) Cahn–Hilliard equation with dynamic boundary conditions and mass constraint on the boundary. J Math Anal Appl 429(2):1190–1213

    Article  MathSciNet  MATH  Google Scholar 

  67. Miranville A, Zelik S (2005) Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions. Math Methods Appl Sci 28(6):709–735

    Article  MathSciNet  MATH  Google Scholar 

  68. Evers JHM, Hille SC, Muntean A (2015) Mild solutions to a measure-valued mass evolution problem with flux boundary conditions. J Differ Equ 259(3):1068–1097

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Buchmueller S, Weidmann U (2006) Parameters of pedestrians, pedestrian traffic and walking facilities. Technical Report 132, ETH, Zürich

  70. Venuti F, Bruno L (2007) An interpretative model of the pedestrian fundamental relation. C R Mecanique 335(4):194–200

    Article  ADS  MATH  Google Scholar 

  71. Pushkarev BS, Zupan JM (1975) Urban space for pedestrians. MIT Press, Cambridge

    Google Scholar 

  72. Habicht AT, Braaksma JP (1984) Effective width of pedestrian corridors. J Transp Eng 110(1):80–93

    Article  Google Scholar 

Download references

Acknowledgments

The work of A. Corbetta was supported by a Lagrange Foundation PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tosin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, L., Corbetta, A. & Tosin, A. From individual behaviour to an evaluation of the collective evolution of crowds along footbridges. J Eng Math 101, 153–173 (2016). https://doi.org/10.1007/s10665-016-9852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-016-9852-z

Keywords

Mathematics Subject Classification

Navigation