Skip to main content
Log in

Stability of active muscle tissue

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The notion of material stability is examined in the context of active muscle tissue modeling, where the nonlinear constitutive law is dependent both on the physiologically driven muscle contraction and finite mechanical deformation. First, the governing equations and constitutive laws for a general active-elastic material with a single preferred direction are linearized about a homogeneous underlying configuration with respect to both the active contraction and deformation gradient. In order to obtain mathematical restrictions analogous to those found in elastic materials, stability conditions are derived based on the propagation of homogeneous plane waves with real wave speeds, and the generalized acoustic tensor is obtained. Focusing on 2D motions, and considering a simplified, decoupled transversely isotropic energy function, the restriction on the active acoustic tensor is recast in terms of a generally applicable constitutive law, with specific attention paid to the fiber contribution. The implication of the material stability conditions on material parameters, active contraction, and elastic stretch is investigated for prototype material models of muscle tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baryshyan AL, Woods W, Trimmer BA, Kaplan DL (2012) Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos. PLoS One 7:e31598

    Article  ADS  Google Scholar 

  2. Paetsch C, Dorfmann A (2013) Non-linear modeling of active biohybrid materials. Int J Nonlinear Mech 56:105–114

    Article  Google Scholar 

  3. Ambrosi D, Pezzuto S (2012) Active stress vs active strain in mechanobiology: constitutive issues. J Elast 107:199–212

    Article  MATH  MathSciNet  Google Scholar 

  4. Paetsch C, Trimmer BA, Dorfmann A (2012) A constitutive model for active-passive transition of muscle fibers. Int J Nonlinear Mech 47:377–387

    Article  Google Scholar 

  5. Eriksson TSE, Prassl AJ, Plank G, Holzapfel GA (2013) Modeling the dispersion in electromechanically coupled myocardium. Int J Numer Method Biomed Eng 29:1267–1284

  6. Eriksson TSE, Prassl AJ, Plank G, Holzapfel GA (2013) Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math Mech Solids 18:592–606

  7. Göktepe S, Kuhl E (2011) Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput Mech 45:227–243

    Article  Google Scholar 

  8. Khodaei H, Mostofizadeh S, Brolin K, Johansson H, Östh J (2013) Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model. Proc Inst Mech Eng H 227:571–580

    Article  Google Scholar 

  9. Pathmanathan P, Chapman SJ, Gavaghan DJ, Whiteley JP (2010) Cardiac electromechanics: The effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q J Mech Appl Math 63:375–399

    Article  MATH  MathSciNet  Google Scholar 

  10. Röhrle O, Davidson JB, Pullan AJ (2008) Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle. SIAM J Sci Stat Comput 30:2882–2904

    Article  MATH  Google Scholar 

  11. Grasa J, Ramírez A, Osta R, Muñoz M, Soteras F, Calvo B (2011) The 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle. Biomech Model Mechanobiol 10:779–787

    Article  Google Scholar 

  12. Ito D, Tanaka E, Yamamoto S (2010) A novel constitutive model of skeletal muscle taking into account anisotropic damage. J Mech Behav Biomed Mater 3:85–93

    Article  Google Scholar 

  13. Murtada SI, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9:749–762

    Article  Google Scholar 

  14. Odegard GM, Haut Donahue TL, Morrow DA, Kaufman KR (2008) Constitutive modeling of skeletal muscle tissue with an explicit strain-energy function. J Biomech Eng-Trans ASME 130:061017

    Article  Google Scholar 

  15. Ambrosi D, Arioli G, Nobile F, Quarteroni A (2011) Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J Appl Math 71:605–621

    Article  MATH  MathSciNet  Google Scholar 

  16. Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog Biophys Mol Biol 97:562–573

    Article  Google Scholar 

  17. Hernández-Gascón B, Grasa J, Calvo B, Rodríguez JF (2013) A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. J Theor Biol 335:108–118

    Article  Google Scholar 

  18. Nardinocchi P, Teresi L (2007) On the active response of soft living tissues. J Elasticity 88:27–39

    Article  MATH  MathSciNet  Google Scholar 

  19. Nardinocchi P, Teresi L (2013) Electromechanical modeling of anisotropic cardiac tissues. Math Mech Solids 18:576–591

    Article  MathSciNet  Google Scholar 

  20. Nobile F, Quarteroni A, Ruiz-Baier R (2012) An active strain electromechanical model for cardiac tissue. Int J Numer Method Biomed Eng 28:2040–7947

    Article  MathSciNet  Google Scholar 

  21. Rossi S, Lassila T, Ruiz-Baier R, Sequeira A, Quarteroni A (2014) Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. Eur J Mech A 48:129–142

  22. Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2012) Orthotropic active strain models for the numerical simulations of cardiac biomechanics. Int J Numer Method Biomed Eng 28:761–788

    Article  MathSciNet  Google Scholar 

  23. Ruiz-Baier R, Gizzi A, Rossi S, Cherubini C, Laadhari A, Filippi S, Quarteroni A (2014) Mathematical modelling of active contraction in isolated cardiomyocytes. Math Med Biol 31:259–283

  24. Shim J, Grosberg A, Nawroth JC, Parker KK, Bertoldi K (2012) Modeling of cardiac muscle thin films: pre-stretch, passive and active behavior. J Biomech 45:832–841

    Article  Google Scholar 

  25. Stålhand J, Klarbring A, Holzapfel GA (2011) A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. J Theor Biol 268:120–130

    Article  Google Scholar 

  26. Rajagopal KR, Wineman AS (1992) A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes. Int J Plast 8:385–395

    Article  MATH  Google Scholar 

  27. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467

    Article  Google Scholar 

  28. Murphy JG (2013) Tension in the fibres of anisotropic non-linearly hyperelastic materials. Some stability results and constitutive restrictions. Int J Solids Struct 50:423–428

    Article  Google Scholar 

  29. Holzapfel GA, Gasser TC, Ogden RW (2004) Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J Biomech Eng 126:264–275

    Article  Google Scholar 

  30. Merodio J, Ogden RW (2002) Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch Mech 54:525–552

    MATH  MathSciNet  Google Scholar 

  31. Merodio J, Ogden RW (2005) Mechanical response of fiber-reinforced incompressible non-linear elastic solids. Int J Nonlinear Mech 40:213–227

  32. Merodio J, Ogden RW (2005) Remarks on instabilities and ellipticity for a fiber-reinforced compressible nonlinearly elastic solid under plane deformation. Q Appl Math 63:325–333

  33. Merodio J, Ogden RW (2005) On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids. Mech Res Commun 32:290–299

  34. Merodio J, Ogden RW (2005) Tensile instabilities and ellipticity in fiber-reinforced compressible non-linearly elastic solids. Int J Eng Sci 43:697–706

  35. Walton JR, Wilber JP (2003) Sufficient conditions for strong ellipticity for a class of anisotropic materials. Int J Nonlin Mech 38:441–455

    Article  MATH  MathSciNet  Google Scholar 

  36. Bertoldi K, Gei M (2011) Instabilities in multilayered soft dielectrics. J Mech Phys Solids 59:18–42

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Abeyaratne R, Knowles J (1999) On the stability of thermoelastic materials. J Elast 53:199–213

    Article  MATH  MathSciNet  Google Scholar 

  38. Dorfmann A, Ogden RW (2010) Electroelastic waves in a finitely deformed electroactive material. IMA J Appl Math 48:1–34

  39. Destrade M, Ogden RW (2011) On magneto-acoustic waves in finitely deformed elastic solids. Math Mech Solids 16:594–604

    Article  MATH  MathSciNet  Google Scholar 

  40. Ogden RW (1997) Non-linear elastic deformations. Dover Publications, Mineola

    Google Scholar 

  41. Dorfmann AL, Ogden RW (2014) Nonlinear theory of electroelastic and magnetoelastic interactions. Springer, New York

  42. Dorfmann A, Ogden RW (2005) Some problems in nonlinear magnetoelasticity. Z Angew Math Phys 56:718–745

    Article  MATH  MathSciNet  Google Scholar 

  43. Dorfmann A, Ogden RW (2006) Nonlinear electroelastic deformations. J Elast 82:99–127

    Article  MATH  MathSciNet  Google Scholar 

  44. Böl M, Weinkert R, Weichert C (2011) A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle. J Mech Behav Biomed 4:1299–1310

    Article  Google Scholar 

  45. Sharifimajd B, Stålhand J (2013) A continuum model for skeletal muscle contraction at homogeneous finite deformations. Biomech Model Mechanobiol 12:965–973

    Article  Google Scholar 

  46. Dorfmann A, Ogden RW (2010) Nonlinear electroelastostatics: incremental equations and stability. Int J Eng Sci 48:1–14

  47. Dorfmann A, Ogden RW (2014) Instabilities of an electroelastic plate. Int J Eng Sci 77:79–101

  48. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MATH  MathSciNet  Google Scholar 

  49. Holzapfel GA, Ogden RW (2009) On planar biaxial tests for anisotropic nonlinearly elastic solids: a continuum mechanical framework. Math Mech Solids 14:474–489

    Article  MATH  Google Scholar 

  50. Lin HT, Dorfmann AL, Trimmer BA (2009) Soft-cuticle biomechanics: a constitutive model of anisotropy for caterpillar integument. J Theor Biol 256:447–457

    Article  Google Scholar 

  51. Ehret AE, Böl M, Itskov M (2011) A continuum constitutive model for the active behavior of skeletal muscle. J Mech Phys Solids 59:625–636

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Dorfmann A, Trimmer BA, Woods WA (2007) A constitutive model for muscle properties in a soft-bodied arthropod. J R Soc Interface 4:257–269

    Article  Google Scholar 

Download references

Acknowledgments

The work of C.P. was supported in part by the National Science Foundation IGERT Grant DGE-1144591. The work of L.D. was supported by National Science Foundation Grant CMMI-1031366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dorfmann.

Appendices

Appendix 1: Derivatives related to invariants

We provide the derivatives of the invariants introduced in this study related to the deformation gradient and the active strain tensor. The second derivatives with respect to the deformation tensor are, in component form, provided as

$$\begin{aligned} \frac{\partial ^2 I_1}{\partial F_{i \alpha } \partial F_{j \beta }}&= 2 \delta _{ij} \delta _{\alpha \beta }, \end{aligned}$$
(8.1)
$$\begin{aligned} \frac{\partial ^2 I_2}{\partial F_{i \alpha } \partial F_{j \beta }}&= 2 \big (2 F_{j \beta } F_{i \alpha } - F_{j \alpha } F_{i \beta } + I_1 \delta _{ij} \delta _{\alpha \beta } - B_{ij} \delta _{\alpha \beta } - C_{\alpha \beta } \delta _{ij}\big ), \end{aligned}$$
(8.2)
$$\begin{aligned} \frac{\partial ^2 I_4}{\partial F_{i \alpha } \partial F_{j \beta }}&= 2 \delta _{ij} A_{\alpha } A_{\beta }, \end{aligned}$$
(8.3)
$$\begin{aligned} \frac{\partial ^2 I_5}{\partial F_{i \alpha } \partial F_{j \beta }}&= 2\big (\delta _{ij} A_{\alpha } C_{\beta \eta } A_{\eta } + A_{\alpha } F_{i \beta } F_{j \eta } A_{\eta } + A_{\alpha } B_{ij} A_{\beta }+ \delta _{\alpha \beta } F_{i \eta } A_{\eta } F_{j \gamma } A_{\gamma } \nonumber \\&\quad +\, A_{\beta } F_{j \alpha } F_{i \eta } A_{\eta }+ \delta _{ij} A_{\beta } C_{\alpha \gamma } A_{\gamma }\big ), \end{aligned}$$
(8.4)
$$\begin{aligned} \frac{\partial ^2 I_{4_{\mathrm{e}}}}{\partial F_{i \alpha } \partial F_{j \beta }}&= 2 I_{4_{\mathrm{a}}}^{-1} \delta _{ij} A_{\alpha } A_{\beta }, \end{aligned}$$
(8.5)
$$\begin{aligned} \frac{\partial ^2 I_{5_{\mathrm{e}}}}{\partial F_{i \alpha } \partial F_{j \beta }}&= 2 I_{4_{\mathrm{a}}}^{-1} \big ( \delta _{ij} A_{\alpha } C_{{\mathrm{a}}_{\beta \eta }}^{-1} C_{\eta \phi } A_{\phi } + A_{\alpha } F_{i \gamma } C_{{\mathrm{a}}_{\gamma \beta }}^{-1} F_{j \phi } A_{\phi } + A_{\alpha } F_{i \gamma } C_{{\mathrm{a}}_{\gamma \eta }}^{-1} F_{j \eta } A_{\beta } + C_{{\mathrm{a}}_{\alpha \beta }}^{-1} F_{j \eta } A_{\eta } F_{i \phi } A_{\phi } \nonumber \\&\qquad \quad +\, C_{{\mathrm{a}}_{\alpha \gamma }}^{-1} F_{j \gamma } A_{\beta } F_{i \phi } A_{\phi } + \delta _{ij} C_{{\mathrm{a}}_{\alpha \gamma }}^{-1} C_{\gamma \eta } A_{\eta } A_{\beta }\big ). \end{aligned}$$
(8.6)

Additionally, we provide the derivatives of the invariants related to the active stretch:

$$\begin{aligned} \frac{\partial I_{4_{\mathrm{e}}}}{\partial F_{{\mathrm{a}}_{B \beta }}}&= -2 I_4 I_{4_{\mathrm{a}}}^{-2} A_{\beta } F_{{\mathrm{a}}_{B \eta }} A_{\eta }, \end{aligned}$$
(8.7)
$$\begin{aligned} \frac{\partial I_{5_{\mathrm{e}}}}{\partial F_{{\mathrm{a}}_{B \beta }}}&= - 2\big ( I_{4_{\mathrm{a}}}^{-2} A_{\beta } F_{{\mathrm{a}}_{B \gamma }} A_{\gamma } A_{\phi } C_{\phi \eta } C_{{\mathrm{a}}_{\eta \mu }}^{-1} C_{\mu \alpha } A_{\alpha } + I_{4_{\mathrm{a}}}^{-1} C_{{\mathrm{a}}_{\beta \pi }}^{-1} C_{\pi \eta } A_{\eta } A_{\gamma } C_{\gamma \psi } F_{{\mathrm{a}}_{\psi B}}^{-1}\big ), \end{aligned}$$
(8.8)
$$\begin{aligned} \frac{\partial I_{4_{\mathrm{a}}}}{\partial F_{{\mathrm{a}}_{B \beta }}}&= 2 A_{\beta } F_{{\mathrm{a}}_{B \eta }} A_{\eta }, \end{aligned}$$
(8.9)
$$\begin{aligned} \frac{\partial I_{5_{\mathrm{a}}}}{\partial F_{{\mathrm{a}}_{B \beta }}}&= 2\big ( A_{\beta } F_{{\mathrm{a}}_{B \phi }} C_{{\mathrm{a}}_{\phi \eta }} A_{\eta } + C_{{\mathrm{a}}_{\beta \eta }} A_{\eta } F_{{\mathrm{a}}_{B \gamma }} A_{\gamma }\big ). \end{aligned}$$
(8.10)

Next, the mixed derivatives with respect to \(\mathbf{F}\) and \(\mathbf{F}_{\mathrm{a}}\) are written in component form

$$\begin{aligned} \frac{\partial ^2 I_{4_{\mathrm{e}}}}{\partial F_{i \alpha } \partial F_{{\mathrm{a}}_{B \beta }}}&= -4 I_{4_{\mathrm{a}}}^{-2} A_{\alpha } F_{i \gamma } A_{\gamma } A_{\beta } F_{{\mathrm{a}}_{B \eta }} A_{\eta }, \end{aligned}$$
(8.11)
$$\begin{aligned} \frac{\partial ^2 I_{5_{\mathrm{e}}}}{\partial F_{i \alpha } \partial F_{{\mathrm{a}}_{B \beta }}}&= -2 \Big [ 2 I_{4_{\mathrm{a}}}^{-2} \big ( A_{\alpha } F_{i \gamma } C_{{\mathrm{a}}_{\gamma \eta }}^{-1} C_{\eta \phi } A_{\phi } + C_{{\mathrm{a}}_{\alpha \gamma }}^{-1} C_{\gamma \eta } A_{\eta } F_{i \phi } A_{\phi }\big )A_{\beta } F_{{\mathrm{a}}_{B \mu }} A_{\mu } + I_{4_{\mathrm{a}}}^{-1} \big ( A_{\alpha } F_{i \gamma } C_{{\mathrm{a}}_{\gamma \beta }}^{-1} A_{\phi } C_{\phi \eta } F_{{\mathrm{a}}_{\eta B}} ^{-1}\nonumber \\&\qquad +\, A_{\alpha } F_{i \gamma } F_{{\mathrm{a}}_{\gamma B}}^{-1} C_{{\mathrm{a}}_{\beta \eta }}^{-1} C_{\eta \phi } A_{\phi } + F_{{\mathrm{a}}_{\alpha B}}^{-1} F_{i \phi } A_{\phi } C_{{\mathrm{a}}_{\beta \gamma }}^{-1} C_{\gamma \eta } A_{\eta } + C_{{\mathrm{a}}_{\alpha \beta }}^{-1} F_{i \phi } A_{\phi } A_{\eta } C_{\eta \gamma } F_{{\mathrm{a}}_{\gamma B}}^{-1}\big ) \Big ]. \end{aligned}$$
(8.12)

The second derivatives with respect to \(\mathbf{F}_{\mathrm{a}}\) of the relevant invariants are given:

$$\begin{aligned} \frac{\partial ^2 I_{4_{\mathrm{e}}}}{\partial F_{{\mathrm{a}}_{B \beta }} \partial F_{{\mathrm{a}}_{D \gamma }}}&= 2 I_4 I_{4_{\mathrm{a}}}^{-2} A_{\beta } A_{\gamma } (4 I_{4_{\mathrm{a}}}^{-1} F_{{\mathrm{a}}_{B \phi }} A_{\phi } F_{{\mathrm{a}}_{D \eta }} A_{\eta } - \delta _{BD} ), \end{aligned}$$
(8.13)
$$\begin{aligned} \frac{\partial ^2 I_{5_{\mathrm{e}}}}{\partial F_{{\mathrm{a}}_{B \beta }} \partial F_{{\mathrm{a}}_{D \gamma }}}&= 2 \Big [ I_{4_{\mathrm{a}}}^{-2} \Big ( A_{\phi } C_{\phi \eta } C_{{\mathrm{a}}_{\eta \mu }}^{-1} C_{\mu \alpha } A_{\alpha }(4 I_{4_{\mathrm{a}}}^{-1}A_{\beta } F_{{\mathrm{a}}_{B \phi }} A_{\phi } A_{\gamma } F_{{\mathrm{a}}_{D \mu }} A_{\mu } - \delta _{BD} A_{\beta } A_{\gamma }) \nonumber \\&\qquad \qquad +\, 2C_{{\mathrm{a}}_{\beta \lambda }}^{-1} C_{\lambda \mu } A_{\mu } A_{\phi } C_{\phi \psi } F_{{\mathrm{a}}_{\psi B}}^{-1} A_{\gamma } F_{{\mathrm{a}}_{D \rho }} A_{\rho }+ 2 A_{\beta } F_{{\mathrm{a}}_{B \theta }} A_{\theta } C_{{\mathrm{a}}_{\gamma \mu }}^{-1} C_{\mu \alpha } A_{\alpha } A_{\phi } C_{\phi \eta } F_{{\mathrm{a}}_{\eta D}}^{-1} \Big ) \nonumber \\&\quad +\, I_{4_{\mathrm{a}}}^{-1} \Big ( C_{\lambda \phi } A_{\phi } A_{\mu } C_{\mu \psi } F_{{\mathrm{a}}_{\psi D}}^{-1} (C_{{\mathrm{a}}_{\beta \gamma }}^{-1} F_{{\mathrm{a}}_{\lambda B}}^{-1} + C_{{\mathrm{a}}_{\beta \lambda }}^{-1} F_{{\mathrm{a}}_{\gamma B}}^{-1}) + F_{{\mathrm{a}}_{\beta D}}^{-1} A_{\phi } C_{\phi \lambda } F_{{\mathrm{a}}_{\lambda B}}^{-1} C_{{\mathrm{a}}_{\gamma \psi }}^{-1} C_{\psi \mu } A_{\mu } \Big ) \Big ], \end{aligned}$$
(8.14)
$$\begin{aligned} \frac{\partial ^2 I_{4_{\mathrm{a}}}}{\partial F_{{\mathrm{a}}_{B \beta }} \partial F_{{\mathrm{a}}_{D \gamma }}}&= 2 \delta _{BD} A_{\beta } A_{\gamma }, \end{aligned}$$
(8.15)
$$\begin{aligned} \frac{\partial ^2 I_{5_{\mathrm{a}}}}{\partial F_{{\mathrm{a}}_{B \beta }} \partial F_{{\mathrm{a}}_{D \gamma }}}&= 2 \bigg [ A_{\beta } \delta _{BD} C_{{\mathrm{a}}_{\gamma \eta }} A_{\eta } + A_{\beta } F_{{\mathrm{a}}_{B \gamma }} F_{{\mathrm{a}}_{D \eta }} A_{\eta } + A_{\beta } F_{{\mathrm{a}}_{B \phi }} A_{\gamma } F_{{\mathrm{a}}_{D \phi }}+ \delta _{\beta \gamma } F_{{\mathrm{a}}_{B \phi }} A_{\phi } F_{{\mathrm{a}}_{D \eta }} A_{\eta } \nonumber \\&\quad +\, F_{{\mathrm{a}}_{D \beta }} F_{{\mathrm{a}}_{B \phi }} A_{\phi } A_{\gamma }+ C_{{\mathrm{a}}_{\beta \eta }} A_{\eta } \delta _{BD} A_{\gamma } \bigg ]. \end{aligned}$$
(8.16)

Appendix 2: Coefficients related to stability

The coefficients appearing in (6.7) given (6.12) are

$$\begin{aligned} H_1&= \mu \lambda _{\mathrm{a}}^{-4} \bigg [ \frac{\partial ^2 \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}}^2} (\lambda ^2 \lambda _{\mathrm{a}}^{-2}-1)^2 + 4\frac{\partial \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}}}(\lambda ^2 \lambda _{\mathrm{a}}^{-2}-1) + 2 \mu _{\mathrm{fib}} \bigg ], \end{aligned}$$
(9.1)
$$\begin{aligned} G&= \mu \lambda _{\mathrm{a}}^{-2}(\lambda ^2 \lambda _{\mathrm{a}}^{-2} - 1) \bigg [ \frac{\partial ^2 \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}} \partial I_{4_{\mathrm{a}}}} (\lambda ^2 \lambda _{\mathrm{a}}^{-2}-1) - \frac{\partial ^2 \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}}^2} \lambda ^2 \lambda _{\mathrm{a}}^{-4} (\lambda ^2 \lambda _{\mathrm{a}}^{-2} -1) \nonumber \\&\qquad \qquad \qquad \qquad \qquad +\, 2 \frac{\partial \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{a}}}} - \frac{\partial \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}}} \lambda _{\mathrm{a}}^{-2}(5\lambda ^2 \lambda _{\mathrm{a}}^{-2} -1 )- 2\mu _{\mathrm{fib}} \lambda _{\mathrm{a}}^{-2} \bigg ]- 2 \mu \mu _{\mathrm{fib}} \lambda ^2 \lambda _{\mathrm{a}}^{-6}, \end{aligned}$$
(9.2)
$$\begin{aligned} {\mathcal {L}}&= 2 \mu \lambda ^2 \lambda _{\mathrm{a}}^{-2} \bigg \{ \lambda _{\mathrm{a}}^{-2} (\lambda ^2 \lambda _{\mathrm{a}}^{-2} -1) \bigg [ \frac{\partial ^2 \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}}^2} \lambda ^2 \lambda _{\mathrm{a}}^{-2} (\lambda ^2 \lambda _{\mathrm{a}}^{-2}-1) + \frac{\partial \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}}}\bigg ( \frac{11}{2}\lambda ^2 \lambda _{\mathrm{a}}^{-2} - \frac{3}{2} \bigg ) + 3\mu _{\mathrm{fib}} \nonumber \\&-\, 2 \lambda _{\mathrm{a}}^2 \bigg ( \frac{\partial ^2 \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}} \partial I_{4_{\mathrm{a}}}} (\lambda ^2 \lambda _{\mathrm{a}}^{-2} -1) + 2 \frac{\mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{a}}}} \bigg ) \bigg ] + 2 \mu _{\mathrm{fib}} \lambda ^2 \lambda _{\mathrm{a}}^{-4} \bigg \} \nonumber \\&+\, \mu \bigg [ (\lambda ^2 \lambda _{\mathrm{a}}^{-2} -1)^2 \bigg ( 2 \frac{\partial ^2 \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{a}}}^2} \lambda _{\mathrm{a}}^2 + \frac{\partial \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{a}}}} \bigg ) + 2 \alpha (3 \lambda _{\mathrm{a}}^2 - 1) \bigg ], \end{aligned}$$
(9.3)

where \(H_2\) is given by (6.18). Next, we provide the derivatives related to \(\mu _{\mathrm{fib}}\) for each case of \(\mu _{\mathrm{a}}\).

1.1 Derivatives for Case 1

For \(\mu _{\mathrm{a}} = c_1(1 - I_{4_{\mathrm{a}}})\), we have

$$\begin{aligned} \frac{\partial \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{a}}}}&= -c_1, \end{aligned}$$
(9.4)

where all other derivatives are zero.

1.2 Derivatives for Case 2

For \(\mu _{\mathrm{a}} = c_1(1 - I_{4_{\mathrm{a}}})\text{ exp }( (I_{4_{\mathrm{a}}}-1)/c_2)\) we have

$$\begin{aligned}&\frac{\partial \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{a}}}} = c_1 \bigg [ \frac{1}{c_2}(1 - I_{4_{\mathrm{a}}}) -1 \bigg ]\text{ e }^{(I_{4_{\mathrm{a}}}-1)/c_2}, \end{aligned}$$
(9.5)
$$\begin{aligned}&\frac{\partial ^2 \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{a}}}^2} = \frac{c_1}{c_2} \bigg [ \frac{1}{c_2}(1 - I_{4_{\mathrm{a}}}) - 2 \bigg ]\text{ e }^{(I_{4_{\mathrm{a}}}-1)/c_2}, \end{aligned}$$
(9.6)

with omitted derivatives equal to zero.

1.3 Derivatives for Case 3

For \(\mu _{\mathrm{a}} = c_1(1 - I_{4_{\mathrm{a}}})\text{ exp }( -(I_{4_{\mathrm{e}}}-1)/c_2)\), we have

$$\begin{aligned}&\frac{\partial \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}}} = -\frac{\mu _{\mathrm{a}}}{c_2}, \end{aligned}$$
(9.7)
$$\begin{aligned}&\frac{\partial \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{a}}}} = - c_1 \text{ e }^{-(I_{4_{\mathrm{e}}}-1)/c_2}, \end{aligned}$$
(9.8)
$$\begin{aligned}&\frac{\partial ^2 \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}}^2} = \frac{\mu _{\mathrm{a}}}{c_2^2}, \end{aligned}$$
(9.9)
$$\begin{aligned}&\frac{\partial ^2 \mu _{\mathrm{fib}}}{\partial I_{4_{\mathrm{e}}} \partial I_{4_{\mathrm{a}}}} = \frac{c_1}{c_2} \text{ e }^{-(I_{4_{\mathrm{e}}}-1)/c_2}, \end{aligned}$$
(9.10)

along with \({\partial ^2 \mu _{\mathrm{fib}}} / {\partial I_{4_{\mathrm{a}}}^2} = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paetsch, C., Dorfmann, L. Stability of active muscle tissue. J Eng Math 95, 193–216 (2015). https://doi.org/10.1007/s10665-014-9750-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9750-1

Keywords

Navigation